131 research outputs found
Splash control of drop impacts with geometric targets
Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the
competition of inertial, viscous, and capillary forces. After impact, a liquid
lamella develops and expands radially, and under certain conditions, the outer
rim breaks up into an irregular arrangement of filaments and secondary
droplets. We show experimentally that the lamella expansion and subsequent
break up of the outer rim can be controlled by length scales that are of
comparable dimension to the impacting drop diameter. Under identical impact
parameters, ie. fluid properties and impact velocity, we observe unique
splashing dynamics by varying the target cross-sectional geometry. These
behaviors include: (i) geometrically-shaped lamellae and (ii) a transition in
splashing stability, from regular to irregular splashing. We propose that
regular splashes are controlled by the azimuthal perturbations imposed by the
target cross-sectional geometry and that irregular splashes are governed by the
fastest-growing unstable Plateau-Rayleigh mode
Large droplet impact on water layers
The impact of large droplets onto an otherwise undisturbed layer of water is considered. The work, which is motivated primarily with regard to aircraft icing, is to try and help understand the role of splashing on the formation of ice on a wing, in particular for large droplets where splash appears, to have a significant effect. Analytical and numerical approaches are used to investigate a single droplet impact onto a water layer. The flow for small times after impact is determined analytically, for both direct and oblique impacts. The impact is also examined numerically using the volume of fluid (VOF) method. At small times there are promising comparisons between the numerical results, the analytical solution and experimental work capturing the ejector sheet. At larger times there is qualitative agreement with experiments and related simulations. Various cases are considered, varying the droplet size to layer depth ratio, including surface roughness, droplet distortion and air effects. The amount of fluid splashed by such an impact is examined and is found to increase with droplet size and to be significantly influenced by surface roughness. The makeup of the splash is also considered, tracking the incoming fluid, and the splash is found to consist mostly of fluid originating in the layer
A projection method for multiphase flows
An Eulerian projection approach for incompressible variable-density two-phase flows is presented. The Navier-Stokes equations governing these flows are reformulated to take the form of the corresponding equations for the lighter phase with a constant density, which can be efficiently solved using standard numerical methods. The effect of the additional mass in the heavier phase is accounted for by a forcing term, which is determined from the solution of an artificial velocity field. This artificial field is subjected solely to inertial and gravity forces as well as the force coupling the flow field and the artificial field. The phase interface in this purely Eulerian approach is described using the level-set method. Results for two-dimensional simulations of the Rayleigh-Taylor instability are presented to validate the new method
Individual participant data meta-analysis to examine interactions between treatment effect and participant-level covariates: statistical recommendations for conduct and planning
Precision medicine research often searches for treatment‐covariate interactions, which refers to when a treatment effect (eg, measured as a mean difference, odds ratio, hazard ratio) changes across values of a participant‐level covariate (eg, age, gender, biomarker). Single trials do not usually have sufficient power to detect genuine treatment‐covariate interactions, which motivate the sharing of individual participant data (IPD) from multiple trials for meta‐analysis. Here, we provide statistical recommendations for conducting and planning an IPD meta‐analysis of randomized trials to examine treatment‐covariate interactions. For conduct, two‐stage and one‐stage statistical models are described, and we recommend: (i) interactions should be estimated directly, and not by calculating differences in meta‐analysis results for subgroups; (ii) interaction estimates should be based solely on within‐study information; (iii) continuous covariates and outcomes should be analyzed on their continuous scale; (iv) nonlinear relationships should be examined for continuous covariates, using a multivariate meta‐analysis of the trend (eg, using restricted cubic spline functions); and (v) translation of interactions into clinical practice is nontrivial, requiring individualized treatment effect prediction. For planning, we describe first why the decision to initiate an IPD meta‐analysis project should not be based on between‐study heterogeneity in the overall treatment effect; and second, how to calculate the power of a potential IPD meta‐analysis project in advance of IPD collection, conditional on characteristics (eg, number of participants, standard deviation of covariates) of the trials (potentially) promising their IPD. Real IPD meta‐analysis projects are used for illustration throughout
“马克思主义与当代社会科学”学术研讨会征文启事
为更深入了解马克思主义对当代社会科学研究的影响,正确把握马克思主义与当代社会科学各学科之间的关系,强化马克思主义对当代中国社会科学研究的指导作用,推进中国特色社会主义理论创新,厦门大学马克思主义研究院与中央编译局当代马克思主义研究所联合举办"马克思主义与当代社会科学"学术研讨会。会议拟于2011年6月上旬在厦门大学召开,特向国内外学者征文
The Global Risk Approach Should Be Better Applied in French Hypertensive Patients: A Comparison between Simulation and Observation Studies
The prediction of the public health impact of a preventive strategy provides valuable support for decision-making. International guidelines for hypertension management have introduced the level of absolute cardiovascular risk in the definition of the treatment target population. The public health impact of implementing such a recommendation has not been measured.We assessed the efficiency of three treatment scenarios according to historical and current versions of practice guidelines on a Realistic Virtual Population representative of the French population aged from 35 to 64 years: 1) BP≥160/95 mm Hg; 2) BP≥140/90 mm Hg and 3) BP≥140/90 mm Hg plus increased CVD risk. We compared the eligibility following the ESC guidelines with the recently observed proportion of treated amongst hypertensive individuals reported by the Etude Nationale Nutrition Santé survey. Lowering the threshold to define hypertension multiplied by 2.5 the number of eligible individuals. Applying the cardiovascular risk rule reduced this number significantly: less than 1/4 of hypertensive women under 55 years and less than 1/3 of hypertensive men below 45 years of age. This was the most efficient strategy. Compared to the simulated guidelines application, men of all ages were undertreated (between 32 and 60%), as were women over 55 years (70%). By contrast, younger women were over-treated (over 200%).The global CVD risk approach to decide for treatment is more efficient than the simple blood pressure level. However, lack of screening rather than guideline application seems to explain the low prescription rates among hypertensive individuals in France. Multidimensional analyses required to obtain these results are possible only through databases at the individual level: realistic virtual populations should become the gold standard for assessing the impact of public health policies at the national level
Development of high-order realizable finite-volume schemes for quadrature-based moment method
Kinetic equations containing terms for spatial transport, gravity, fluid drag and particle-particle collisions can be used to model dilute gas-particle flows. However, the enormity of independent variables makes direct numerical simulation of these equations almost impossible for practical problems. A viable alternative is to reformulate the problem in terms of moments of velocity distribution. Recently, a quadrature-based moment method was derived by Fox for approximating solutions to kinetic equation for arbitrary Knudsen number. Fox also described 1st- and 2nd-order finite-volume schemes for solving the equations. The success of the new method is based on a moment-inversion algorithm that is used to calculate non-negative weights and abscissas from moments. The moment-inversion algorithm does not work if the moments are non-realizable, meaning they do not correspond to a distribution function. Not all the finite-volume schemes lead to realizable moments. Desjardins et al. showed that realizability is guaranteed with the 1 st-order finite-volume scheme, but at the expense of excess numerical diffusion. In the present work, the nonrealizability of the standard 2 nd-order finite-volume scheme is demonstrated and a generalized idea for the development of high-order realizable finite-volume schemes for quadrature-based moment methods is presented. This marks a significant improvement in the accuracy of solutions using the quadrature-based moment method as the use of 1st-order scheme to guarantee realizability is no longer a limitation
Can we identify response markers to antihypertensive drugs? First results from the Ideal Trial
Current antihypertensive strategies do not take into account that individual characteristics may influence the magnitude of blood pressure (BP) reduction. Guidelines promote trial-and-error approaches with many different drugs. We conducted the Identification of the Determinants of the Efficacy of Arterial blood pressure Lowering drugs (IDEAL) Trial to identify factors associated with BP responses to perindopril and indapamide. IDEAL was a cross-over, double-blind, placebo-controlled trial, involving four 4-week periods: indapamide, perindopril and two placebo. Eligible patients were untreated, hypertensive and aged 25-70 years. The main outcome was systolic BP (SBP) response to drugs. The 112 participants with good compliance had a mean age of 52. One in every three participants was a woman. In middle-aged women, the SBP reduction from drugs was -11.5 mm Hg (indapamide) and -8.3 mm Hg (perindopril). In men, the response was significantly smaller: -4.8 mm Hg (indapamide) and -4.3 (perindopril) (P for sex differences 0.001 and 0.015, respectively). SBP response to perindopril decreased by 2 mm Hg every 10 years of age in both sexes (P=0.01). The response to indapamide increased by 3 mm Hg every 10 years of age gradient in women (P=0.02). Age and sex were important determinants of BP response for antihypertensive drugs in the IDEAL population. This should be taken into account when choosing drugs a priori.Journal of Human Hypertension advance online publication, 17 April 2014; doi:10.1038/jhh.2014.29
Reappraisal of Metformin Efficacy in the Treatment of Type 2 Diabetes: A Meta-Analysis of Randomised Controlled Trials
Catherine Cornu and colleagues performed a meta-analysis of randomised controlled trials of metformin efficacy on cardiovascular morbidity or mortality in patients with type 2 diabetes and showed that although metformin is considered the gold standard, its benefit/risk ratio remains uncertain
- …