19 research outputs found

    Comparison of Short-Term Estrogenicity Tests for Identification of Hormone-Disrupting Chemicals

    Get PDF
    The aim of this study was to compare results obtained by eight different short-term assays of estrogenlike actions of chemicals conducted in 10 different laboratories in five countries. Twenty chemicals were selected to represent direct-acting estrogens, compounds with estrogenic metabolites, estrogenic antagonists, and a known cytotoxic agent. Also included in the test panel were 17β-estradiol as a positive control and ethanol as solvent control. The test compounds were coded before distribution. Test methods included direct binding to the estrogen receptor (ER), proliferation of MCF-7 cells, transient reporter gene expression in MCF-7 cells, reporter gene expression in yeast strains stably transfected with the human ER and an estrogen-responsive reporter gene, and vitellogenin production in juvenile rainbow trout. 17β-Estradiol, 17α-ethynyl estradiol, and diethylstilbestrol induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds—tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol dodecylethoxylate, butylbenzylphthalate, dibutylphthalate, methoxychlor, o,p′-DDT, p,p′-DDE, endosulfan, chlomequat chloride, and ethanol—varied among the assays. The results demonstrate that careful standardization is necessary to obtain a reasonable degree of reproducibility. Also, similar methods vary in their sensitivity to estrogenic compounds. Thus, short-term tests are useful for screening purposes, but the methods must be further validated by additional interlaboratory and interassay comparisons to document the reliability of the methods

    Comparison of shor-term estrogenicity tests for identification of hormone-disrupting chemicals

    Get PDF
    The aim of this study was to compare results obtained by eight different short-term assays of estrogenlike actions of chemicals conducted in 10 different laboratories in five countries. Twenty chemicals were selected to represent direct-acting estrogens, compounds with estrogenic metabolites, estrogenic antagonists, and a known cytotoxic agent. Also included in the test panel were 17β-estradiol as a positive control and ethanol as solvent control. The test compounds were coded before distribution. Test methods included direct binding to the estrogen receptor (ER), proliferation of MCF-7 cells, transient reporter gene expression in MCF-7 cells, reporter gene expression in yeast strains stably transfected with the human ER and an estrogen-responsive reporter gene, and vitellogenin production in juvenile rainbow trout. 17β-Estradiol, 17α-ethynyl estradiol, and diethylstilbestrol induced a strong estrogenic response in all test systems. Colchicine caused cytotoxicity only. Bisphenol A induced an estrogenic response in all assays. The results obtained for the remaining test compounds—tamoxifen, ICI 182.780, testosterone, bisphenol A dimethacrylate, 4-n-octylphenol, 4-n-nonylphenol, nonylphenol dodecylethoxylate, butylbenzylphthalate, dibutylphthalate, methoxychlor, o,p′-DDT, p,p′-DDE, endosulfan, chlomequat chloride, and ethanol—varied among the assays. The results demonstrate that careful standardization is necessary to obtain a reasonable degree of reproducibility. Also, similar methods vary in their sensitivity to estrogenic compounds. Thus, short-term tests are useful for screening purposes, but the methods must be further validated by additional interlaboratory and interassay comparisons to document the reliability of the methods.This study was supported by grants from the European Commission (Biomedicine and Health Research and Technological Programme, BMH4-CT96-03 14), the Danish Environmental Research Programme (96.01.015.16), and the Danish Medical Research Council (9401656)

    Estrogenic potency of benzophenone UV filters in breast cancer cells: proliferative and transcriptional activity substantiated by docking analysis

    Get PDF
    The results from recent studies show that some benzophenones (BPs) and their hydroxylated metabolites can function as weak estrogens (E2) in the environment. However, little is known about the structure-activity relationship of these molecules. We have examined the effects of exposure to ten different BPs on the proliferation of estrogen receptor (ER)positive breast cancer cells and on the transcriptional activity of E2-target genes. We analyzed two genes that are tightly linked with estrogen-mediated proliferation, the CXCL12 and amphiregulin genes and two classical estrogen-responsive genes, the pS2 and progesterone receptor. Significant differences in the BPs efficiency to induce cell proliferation and endogenous E2-target gene expressions were observed. Using ERE-, Sp1-, AP1- and C3-reporter genes that contain different ER-binding sites in their promoter, we also showed significant differences in the BPs efficiency in activation of the ER transactivation. Together, our analyzes showed that the most active molecule is 4-hydroxy-BP. Docking analysis of the interaction of BPs in the ligand-binding pocket of ERa suggests that the minimum structural requirement for the estrogenic activity of BPs is a hydroxyl (OH) group in the phenyl A-ring that allows interaction with Glu-353, Arg-394 or Phe-404, which enhances the stability between BPs and ERa. Our modeling also indicates a loss of interaction between the OH groups of the phenyl B-ring and His-524. In addition, the presence of some OH groups in the phenyl B-ring can create repulsion forces, which may constrain helix 12 in an unfavorable position, explaining the differential estrogenic effects of BPs. These results

    An Efficient Solvent-Free Microwave-Assisted Synthesis of Cinnamamides by Amidation Reaction Using Phenylboronic Acid/Lewis Base Co-catalytic System

    No full text
    International audienceA microwave-assisted dehydrative amide condensation reaction is reported as an efficient access to cinnamamide derivatives under solvent-free conditions. This protocol between conjugated carboxylic acids and amines is based on the use of a co-catalytic system, including the presence of the commercially available phenylboronic acid and 4-( N , N -dimethylamino)pyridine N -oxide (DMAPO), with a complete chemoselectivity in favor of the corresponding alpha,beta-unsaturated amides. The implementation of the reaction needs no special precaution, and less reactive amines, such as substituted anilines, are also efficient under these conditions. A series of novel conjugated amides have been evaluated for their cytotoxic activities against several human cancer cell lines

    Characterization of Glyceollins as Novel Aryl Hydrocarbon Receptor Ligands and Their Role in Cell Migration

    No full text
    International audienceRecent studies strongly support the use of the aryl hydrocarbon receptor (AhR) as a therapeutic target in breast cancer. Glyceollins, a group of soybean phytoalexins, are known to exert therapeutic effects in chronic human diseases and also in cancer. To investigate the interaction between glyceollin I (GI), glyceollin II (GII) and AhR, a computational docking analysis, luciferase assays, immunofluorescence and transcriptome analyses were performed with different cancer cell lines. The docking experiments predicted that GI and GII can enter into the AhR binding pocket, but their interactions with the amino acids of the binding site differ, in part, from those interacting with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Both GI and GII were able to weakly and partially activate AhR, with GII being more potent. The results from the transcriptome assays showed that approximately 10% of the genes regulated by TCDD were also modified by both GI and GII, which could have either antagonistic or synergistic effects upon TCDD activation. In addition, we report here, on the basis of phenotype, that GI and GII inhibit the migration of triple-negative (ER-, PgR-, HER2NEU-) MDA-MB-231 breast cancer cells, and that they inhibit the expression of genes which code for important regulators of cell migration and invasion in cancer tissues. In conclusion, GI and GII are AhR ligands that should be further investigated to determine their usefulness in cancer treatments

    Evaluation of BP-induced expression of several endogenous estrogen-regulated genes.

    No full text
    <p>After hormone deprivation for 24 h, MCF-7 cells were grown in medium containing 2.5% dextran-treated charcoal stripped FBS and treated with 10<sup>−8</sup> M E2 or different concentrations of BPs (10<sup>−8</sup>, 10<sup>−7</sup> and 10<sup>−6</sup> M, illustrated by color gradations) for 48 h. In addition, treatments to 10<sup>−6</sup> M BPs were also performed in presence of 10<sup>−7</sup> M of the anti-estrogen ICI<sub>182,780</sub> (ICI) (open bars for BP + ICI treatments and hatched bar for E2 + ICI treatment). The expression levels of several E2-regulated genes, (<b>A</b>) CXCL12, (<b>B</b>) Amphiregulin, (<b>C</b>) pS2 and (<b>D</b>) Progesterone Receptor (PR), after the treatments were quantified using real-time PCR. Data are the mean values from triplicate experiments ± SEM (* P<0.05, **P<0.01, ***P<0.001).</p
    corecore