88 research outputs found

    Accurate prediction of the solid-state region of the Ni-Al phase diagram including configurational and vibrational entropy and magnetic effects

    Full text link
    The solid-state region of the Ni-Al phase diagram is predicted from first-principles calculations and Monte Carlo simulations through the cluster expansion formalism. In addition to the formation enthalpy and to the configurational entropy, the vibrational entropy and the magnetic enthalpy are included to calculate the Gibbs free energy of each phase. The computed phase diagram is in excellent agreement with the experimentally accepted phase diagram and provides information about the phase boundary between AlNi3 and Ni below 300 K. These results demonstrate the potential of this methodology to determine accurately the phase diagram of alloys of technological interest. Finally, the contributions of vibrational entropy and magnetic effects to the overall stability and solubility of the different phases are analyzed independentlyThis investigation was supported by the European Union’s Horizon 2020 research and innovation program through a Marie SklodowskaCurie Individual Fellowship (Grant Agreement 893883) and also by the project (MAD2D-CM)-IMDEA Materials funded by Comunidad de Madrid, by the Recovery, Transformation and Resilience Plan, and by NextGenerationEU from the European Union, as well as by the Innovation Ability Promotion Program of Hebei (22567609H). Additional support from rom the Comunidad de Madrid under the Multiannual Agreement with UC3M in the line of Excellence of University Professors (EPUC3M23), in the context of the 5th PRICIT is also acknowledged. Computer resources and technical assistance provided by the Centro de Supercomputacion ´ y Visualizacion ´ de Madrid (CeSViMa) and by the Spanish Supercomputing Network (project FI-2021–3–6) are gratefully acknowledged. Wei Shao also acknowledges the support from the China Scholarship Counci

    Cooperative and anticooperative effects in resonance assisted hydrogen bonds in merged structures of malondialdehyde

    Get PDF
    We analyzed non-additive effects in resonance assisted hydrogen bonds (RAHBs) in different b-enolones, which are archetypal compounds of these types of interactions. For this purpose, we used (i) potential energy curves to compute the formation energy, DERAHB form , of the RAHBs of interest in different circumstances along with (ii) tools offered by quantum chemical topology, namely, the Quantum Theory of Atoms In Molecules (QTAIM) and the Interacting Quantum Atoms (IQA) electronic energy partition. We established the effect that a given H-bond exerts over DERAHB form associated with another RAHB, determining in this way the cooperativity or the anticooperativity of these interactions. The mesomeric structures and the QTAIM delocalisation indices are consistent with the determined cooperative or anticooperative character of two given RAHBs. The HB cooperativity and anticooperativity studied herein are directly reflected in the IQA interaction energy EOH int , but they are modulated by the surrounding hydrocarbon chain. The IQA decomposition of DEcoop, a measure of the cooperativity between a pair of interacting RAHBs, indicates that the analyzed H-bond cooperative/anticooperative effects are associated with greater/smaller (i) strengthening of the pseudo-bicyclic structure of the compounds of interest and (ii) electron localisations with its corresponding changes in the intra and intermolecular exchange–correlation contributions to DERAHB form . Overall, we expect that this investigation will provide valuable insights into the interplay among hydrogen bonded atoms and the p system in RAHBs contributing in this way to the understanding of the general features of H-bonds.

    Atoms in molecules in real space: a fertile field for chemical bonding

    Full text link
    In this perspective, we review some recent advances in the concept of atoms-in-molecules from a real space perspective. We first introduce the general formalism of atomic weight factors that allows unifying the treatment of fuzzy and non-fuzzy decompositions under a common algebraic umbrella. We then show how the use of reduced density matrices and their cumulants allows partitioning any quantum mechanical observable into atomic or group contributions. This circumstance provides access to electron counting as well as energy partitioning, on the same footing. We focus on how the fluctuations of atomic populations, as measured by the statistical cumulants of the electron distribution functions, are related to general multi-center bonding descriptors. Then we turn our attention to the interacting quantum atom energy partitioning, which is briefly reviewed since several general accounts on it have already appeared in the literature. More attention is paid to recent applications to large systems. Finally, we consider how a common formalism to extract electron counts and energies can be used to establish an algebraic justification for the extensively used bond order-bond energy relationships. We also briefly review a path to recover one-electron functions from real space partitions. Although most of the applications considered will be restricted to real space atoms taken from the quantum theory of atoms in molecules, arguably the most successful of all the atomic partitions devised so far, all the take-home messages from this perspective are generalizable to any real space decompositionsWe acknowledge the spanish MICINN, grant PID2021-122763NB-I00 and the FICyT, grant IDI/2021/000054 for financial support. TRR gratefully acknowledges DGTIC/UNAM for computer time (LANCAD-UNAM-DGTIC 250

    Local hydrological conditions influence tree diversity and composition across the Amazon basin

    Get PDF
    Tree diversity and composition in Amazonia are known to be strongly determined by the water supplied by precipitation. Nevertheless, within the same climatic regime, water availability is modulated by local topography and soil characteristics (hereafter referred to as local hydrological conditions), varying from saturated and poorly drained to well-drained and potentially dry areas. While these conditions may be expected to influence species distribution, the impacts of local hydrological conditions on tree diversity and composition remain poorly understood at the whole Amazon basin scale. Using a dataset of 443 1-ha non-flooded forest plots distributed across the basin, we investigate how local hydrological conditions influence 1) tree alpha diversity, 2) the community-weighted wood density mean (CWM-wd) – a proxy for hydraulic resistance and 3) tree species composition. We find that the effect of local hydrological conditions on tree diversity depends on climate, being more evident in wetter forests, where diversity increases towards locations with well-drained soils. CWM-wd increased towards better drained soils in Southern and Western Amazonia. Tree species composition changed along local soil hydrological gradients in Central-Eastern, Western and Southern Amazonia, and those changes were correlated with changes in the mean wood density of plots. Our results suggest that local hydrological gradients filter species, influencing the diversity and composition of Amazonian forests. Overall, this study shows that the effect of local hydrological conditions is pervasive, extending over wide Amazonian regions, and reinforces the importance of accounting for local topography and hydrology to better understand the likely response and resilience of forests to increased frequency of extreme climate events and rising temperatures

    Mapping density, diversity and species-richness of the Amazon tree flora

    Get PDF
    Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution
    corecore