61 research outputs found

    Differential Regulation of GABABReceptor Trafficking by Different Modes ofN-methyl-d-aspartate (NMDA) Receptor Signaling

    Get PDF
    Inhibitory GABAB receptors (GABABRs) can down-regulate most excitatory synapses in the CNS by reducing postsynaptic excitability. Functional GABABRs are heterodimers of GABAB1 and GABAB2 subunits and here we show that the trafficking and surface expression of GABABRs is differentially regulated by synaptic or pathophysiological activation of NMDA receptors (NMDARs). Activation of synaptic NMDARs using a chemLTP protocol increases GABABR recycling and surface expression. In contrast, excitotoxic global activation of synaptic and extrasynaptic NMDARs by bath application of NMDA causes the loss of surface GABABRs. Intriguingly, exposing neurons to extreme metabolic stress using oxygen/glucose deprivation (OGD) increases GABAB1 but decreases GABAB2 surface expression. The increase in surface GABAB1 involves enhanced recycling and is blocked by the NMDAR antagonist AP5. The decrease in surface GABAB2 is also blocked by AP5 and by inhibiting degradation pathways. These results indicate that NMDAR activity is critical in GABABR trafficking and function and that the individual subunits can be separately controlled to regulate neuronal responsiveness and survival

    Epigenetic Silencing of Nucleolar rRNA Genes in Alzheimer's Disease

    Get PDF
    Background: Ribosomal deficits are documented in mild cognitive impairment (MCI), which often represents an early stage Alzheimer’s disease (AD), as well as in advanced AD. The nucleolar rRNA genes (rDNA), transcription of which is critical for ribosomal biogenesis, are regulated by epigenetic silencing including promoter CpG methylation. Methodology/Principal Findings: To assess whether CpG methylation of the rDNA promoter was dysregulated across the AD spectrum, we analyzed brain samples from 10 MCI-, 23 AD-, and, 24 age-matched control individuals using bisulfite mapping. The rDNA promoter became hypermethylated in cerebro-cortical samples from MCI and AD groups. In parietal cortex, the rDNA promoter was hypermethylated more in MCI than in advanced AD. The cytosine methylation of total genomic DNA was similar in AD, MCI, and control samples. Consistent with a notion that hypermethylation-mediated silencing of the nucleolar chromatin stabilizes rDNA loci, preventing their senescence-associated loss, genomic rDNA content was elevated in cerebrocortical samples from MCI and AD groups. Conclusions/Significance: In conclusion, rDNA hypermethylation could be a new epigenetic marker of AD. Moreover, silencing of nucleolar chromatin may occur during early stages of AD pathology and play a role in AD-related ribosoma

    Binding hotspots of BAZ2B bromodomain: Histone interaction revealed by solution NMR driven docking.

    Get PDF
    Bromodomains are epigenetic reader domains, which have come under increasing scrutiny both from academic and pharmaceutical research groups. Effective targeting of the BAZ2B bromodomain by small molecule inhibitors has been recently reported, but no structural information is yet available on the interaction with its natural binding partner, acetylated histone H3K14ac. We have assigned the BAZ2B bromodomain and studied its interaction with H3K14ac acetylated peptides by NMR spectroscopy using both chemical shift perturbation (CSP) data and clean chemical exchange (CLEANEX-PM) NMR experiments. The latter was used to characterize water molecules known to play an important role in mediating interactions. Besides the anticipated Kac binding site, we consistently found the bromodomain BC loop as hotspots for the interaction. This information was used to create a data-driven model for the complex using HADDOCK. Our findings provide both structure and dynamics characterization that will be useful in the quest for potent and selective inhibitors to probe the function of the BAZ2B bromodomain.This is the final published version of the article. It has been published by the American Chemical Society in Biochemistry. The article can be accessed on their website here: http://pubs.acs.org/doi/abs/10.1021/bi500909d. It is freely available under a CC BY licence

    Heterochromatin and the molecular mechanisms of 'parent-of-origin' effects in animals.

    Get PDF
    Twenty five years ago it was proposed that conserved components of constitutive heterochromatin assemble heterochromatinlike complexes in euchromatin and this could provide a general mechanism for regulating heritable (cell-to-cell) changes in gene expressibility. As a special case, differences in the assembly of heterochromatin-like complexes on homologous chromosomes might also regulate the parent-of-origin-dependent gene expression observed in placental mammals. Here, the progress made in the intervening period with emphasis on the role of heterochromatin and heterochromatin-like complexes in parent-of-origin effects in animals is reviewed

    Formation of nuclear heterochromatin: the nucleolar point of view

    Full text link
    Establishment and inheritance of heterochromatic states is critical in maintaining genome integrity and gene expression state. The elucidation of the mechanisms implicated in these processes is fundamental to understand the control of epigenetic regulation of the genome. Recently, the nucleolus emerged as an important component of the nuclear architecture. Although the nucleolus is the most active site of cellular transcription, it is also an attractive compartment for nuclear heterochromatic regions, such as pericentric repeats, inactive X chromosome and regions with low gene density significantly enriched in repressed genes. The coexistence of euchromatic and heterochromatic rRNA genes in each cell reflects these two opposite functions of the nucleolus. An epigenetic network that is controlled by NoRC complex establishes and maintains rDNA heterochromatin. It is here discussed how heterochromatic rRNA genes and the associated epigenetic regulatory activities might mediate formation and inheritance of nuclear heterochromatic regions. Finally, we propose that the analysis of the components of heterochromatic rRNA genes will be not only relevant to understand the general composition of heterochromatin but has the potential to provide important and novel insights of how nuclear heterochromatic structures are established and inherited
    corecore