887 research outputs found

    CCRS proposal for evaluating LANDSAT-D MSS and TM data

    Get PDF
    Accomplishments in the evaluation of LANDSAT 4 data are reported. The objectives of the Canadian proposal are: (1) to quantify the LANDSAT-4 sensors and system performance for the purpose of updating the radiometric and geometric correction algorithms for MSS and for developing and evaluating new correction algorithms to be used for TM data processing; (2) to compare and access the degree to which LANDSAT-4 MSS data can be integrated with MSS imagery acquired from earlier LANDSAT missions; and (3) to apply image analysis and information extraction techniques for specific user applications such as forestry or agriculture

    Evaluating LANDSAT-4 MSS and TM data

    Get PDF
    Interband line pixel misregistrations were determined for the four MSS bands of the Mistassini, Ontario scene and multitemporal registration of LANDSAT-4 products were tested for two different geocoded scenes. Line and pixel misregistrations are tabulated as determined by the manual ground control points and the digital band to band correlation techniques. A method was developed for determining the spectral information content of TM images for forestry applications

    CCRS proposal for evaluating LANDSAT-4 MSS and TM data

    Get PDF
    The measurement of registration errors in LANDSAT MSS data is discussed as well as the development of a revised algorithm for the radiometric calibration of TM data and the production of a geocoded TM image

    Destruction of the Mott Insulating Ground State of Ca_2RuO_4 by a Structural Transition

    Full text link
    We report a first-order phase transition at T_M=357 K in single crystal Ca_2RuO_4, an isomorph to the superconductor Sr_2RuO_4. The discontinuous decrease in electrical resistivity signals the near destruction of the Mott insulating phase and is triggered by a structural transition from the low temperature orthorhombic to a high temperature tetragonal phase. The magnetic susceptibility, which is temperature dependent but not Curie-like decreases abruptly at TM and becomes less temperature dependent. Unlike most insulator to metal transitions, the system is not magnetically ordered in either phase, though the Mott insulator phase is antiferromagnetic below T_N=110 K.Comment: Accepted for publication in Phys. Rev. B (Rapid Communications

    Nucleon-induced reactions at intermediate energies: New data at 96 MeV and theoretical status

    Full text link
    Double-differential cross sections for light charged particle production (up to A=4) were measured in 96 MeV neutron-induced reactions, at TSL laboratory cyclotron in Uppsala (Sweden). Measurements for three targets, Fe, Pb, and U, were performed using two independent devices, SCANDAL and MEDLEY. The data were recorded with low energy thresholds and for a wide angular range (20-160 degrees). The normalization procedure used to extract the cross sections is based on the np elastic scattering reaction that we measured and for which we present experimental results. A good control of the systematic uncertainties affecting the results is achieved. Calculations using the exciton model are reported. Two different theoretical approches proposed to improve its predictive power regarding the complex particle emission are tested. The capabilities of each approach is illustrated by comparison with the 96 MeV data that we measured, and with other experimental results available in the literature.Comment: 21 pages, 28 figure

    Why alternative teenagers self-harm: exploring the link between non-suicidal self-injury, attempted suicide and adolescent identity

    Get PDF
    Background: The term ‘self-harm’ encompasses both attempted suicide and non-suicidal self-injury (NSSI). Specific adolescent subpopulations such as ethnic or sexual minorities, and more controversially, those who identify as ‘Alternative’ (Goth, Emo) have been proposed as being more likely to self-harm, while other groups such as ‘Jocks’ are linked with protective coping behaviours (for example exercise). NSSI has autonomic (it reduces negative emotions) and social (it communicates distress or facilitates group ‘bonding’) functions. This study explores the links between such aspects of self-harm, primarily NSSI, and youth subculture.<p></p> Methods: An anonymous survey was carried out of 452 15 year old German school students. Measures included: identification with different youth cultures, i.e. Alternative (Goth, Emo, Punk), Nerd (academic) or Jock (athletic); social background, e.g. socioeconomic status; and experience of victimisation. Self-harm (suicide and NSSI) was assessed using Self-harm Behavior Questionnaire and the Functional Assessment of Self-Mutilation (FASM).<p></p> Results: An “Alternative” identity was directly (r ≈ 0.3) and a “Jock” identity inversely (r ≈ -0.1) correlated with self-harm. “Alternative” teenagers self-injured more frequently (NSSI 45.5% vs. 18.8%), repeatedly self-injured, and were 4–8 times more likely to attempt suicide (even after adjusting for social background) than their non-Alternative peers. They were also more likely to self-injure for autonomic, communicative and social reasons than other adolescents.<p></p> Conclusions: About half of ‘Alternative’ adolescents’ self-injure, primarily to regulate emotions and communicate distress. However, a minority self-injure to reinforce their group identity, i.e. ‘To feel more a part of a group’

    Caveolin-1 and Altered Neuregulin Signaling Contribute to the Pathophysiological Progression of Diabetic Peripheral Neuropathy

    Get PDF
    Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.OBJECTIVE Evaluate if Erb B2 activation and the loss of caveolin-1 (Cav1) contribute to the pathophysiological progression of diabetic peripheral neuropathy (DPN). RESEARCH DESIGN AND METHODS Cav1 knockout and wild-type C57BL/6 mice were rendered diabetic with streptozotocin, and changes in motor nerve conduction velocity (MNCV), mechanical and thermal hypoalgesia, Erb B2 phosphorylation (pErb B2), and epidermal nerve fiber density were assessed. The contribution of Erb B2 to DPN was assessed using the Erb B2 inhibitors PKI 166 and erlotinib and a conditional bitransgenic mouse that expressed a constitutively active form of Erb B2 in myelinated Schwann cells (SCs). RESULTS Diabetic mice exhibited decreased MNCV and mechanical and thermal sensitivity, but the extent of these deficits was more severe in diabetic Cav1 knockout mice. Diabetes increased pErb B2 levels in both genotypes, but the absence of Cav1 correlated with a greater increase in pErb B2. Erb B2 activation contributed to the mechanical hypoalgesia and MNCV deficits in both diabetic genotypes because treatment with erlotinib or PKI 166 improved these indexes of DPN. Similarly, induction of a constitutively active Erb B2 in myelinated SCs was sufficient to decrease MNCV and induce a mechanical hypoalgesia in the absence of diabetes. CONCLUSIONS Increased Erb B2 activity contributes to specific indexes of DPN, and Cav1 may be an endogenous regulator of Erb B2 signaling. Altered Erb B2 signaling is a novel mechanism that contributes to SC dysfunction in diabetes, and inhibiting Erb B2 may ameliorate deficits of tactile sensitivity in DPN. Diabetic peripheral neuropathy (DPN) is a common complication of diabetes (1). Although hyperglycemia is the definitive cause of DPN (2), the vascular, glial, and neuronal damage that underlies the progressive axonopathy in DPN has a complex biochemical etiology involving oxidative stress (3,4), protein glycation (5), protein kinase C activation (6), polyol synthesis (7), and the hexosamine pathway (8). Altered neurotrophic support also contributes to sensory neuron dysfunction in DPN (9), but whether diabetes may alter growth factor signaling in Schwann cells (SCs), which also undergo substantial degeneration in diabetes, is poorly defined. Neuregulins are growth factors that control SC growth, survival, and differentiation via their interaction with Erb B receptors (10). Although Erb B2 signaling promotes developmental myelination and is clearly trophic for SCs, pharmacological evidence supports that pathologic activation of Erb B2 after axotomy (11) or infection with leprosy bacilli (12) is sufficient to induce SC dedifferentiation and demyelination. Additionally, genetic evidence supports that Erb B2 can promote the development of sensory neuropathies independent of diabetes because expression of a dominant-negative Erb B4 in nonmyelinating (13) or myelinating (14) SCs induced a temperature or mechanical sensory neuropathy, respectively. Given the contribution of Erb B2 to the degeneration of SCs, endogenous proteins that regulate Erb B2 activity may influence the development of certain aspects of sensory neuropathies. The interaction of Erb B2 with the protein caveolin-1 (Cav1) inhibits the intrinsic tyrosine kinase activity of the receptor (15). Cav1 is highly expressed in mature, myelinated SCs (16), and we have shown that prolonged hyperglycemia promoted the downregulation of Cav1 in SCs of sciatic nerve (17). Cav1 may regulate Erb B2 signaling in SCs because its forced downregulation was sufficient to enhance neuregulin-induced demyelination of SC–dorsal root ganglion (DRG) neuron cocultures (18). However, it is unknown whether an increase in Erb B2 activity may contribute to the pathophysiological development of DPN and if changes in Cav1 expression may alter Erb B2 activation in diabetic nerve. In the current study, we demonstrate that diabetic Cav1 knockout mice showed an increased activation of Erb B2 and developed greater motor nerve conduction velocity (MNCV) deficits relative to their wild-type counterparts. Inhibition of Erb B2 with two structurally diverse inhibitors corrected the MNCV deficits and mechanical hypoalgesia evident after 6 or 15 weeks of diabetes. Also, induction of a constitutively active Erb B2 in myelinated SCs of adult mice was sufficient to recapitulate the MNCV and mechanical sensitivity deficits observed in the diabetic mice. These studies provide the first evidence that activation of Erb B2 contributes to deficits associated with myelinated fiber function in diabetic nerve and suggest that Cav1 may serve as an endogenous regulator of Erb B2.This work was supported by grants from the Juvenile Diabetes Research Foundation and the National Institutes of Health (NS-054847 and DK-073594)

    HPV Prevalence and Prognostic Value in a Prospective Cohort of 255 Patients with Locally Advanced HNSCC: A Single-Centre Experience

    Get PDF
    Background. HPV is a positive prognostic factor in HNSCC. We studied the prevalence and prognostic impact of HPV on survival parameters and treatment toxicity in patients with locally advanced HNSCC treated with concomitant chemoradiation therapy. Methods. Data on efficacy and toxicity were available for 560 patients. HPV was detected by PCR. Analysis was performed using Kaplan-Meier survival curves, Fisher’s test for categorical data, and log-rank statistics for failure times. Results. Median follow-up was 4.7 years. DNA extraction was successful in 255 cases. HPV prevalence was 68.6%, and 53.3% for HPV 16. For HPV+ and HPV−, median LRC was 8.9 and 2.2 years (P=0.0002), median DFS was 8.9 and 2.1 years (P=0.0014), and median OS was 8.9 and 3.1 years (P=0.0002). Survival was different based on HPV genotype, stage, treatment period, and chemotherapy regimen. COX adjusted analysis for T, N, age, and treatment remained significant (P=0.004). Conclusions. Oropharyngeal cancer is increasingly linked to HPV. This study confirms that HPV status is associated with improved prognosis among H&N cancer patients receiving CRT and should be a stratification factor for clinical trials including H&N cases. Toxicity of CRT is not modified for the HPV population

    c-Src Regulates Akt Signaling in Response to Ghrelin via β-Arrestin Signaling-Independent and -Dependent Mechanisms

    Get PDF
    The aim of the present study was to identify the signaling mechanisms to ghrelin-stimulated activation of the serine/threonine kinase Akt. In human embryonic kidney 293 (HEK293) cells transfected with GHS-R1a, ghrelin leads to the activation of Akt through the interplay of distinct signaling mechanisms: an early Gi/o protein-dependent pathway and a late pathway mediated by β-arrestins. The starting point is the Gi/o-protein dependent PI3K activation that leads to the membrane recruitment of Akt, which is phosphorylated at Y by c-Src with the subsequent phosphorylation at A-loop (T308) and HM (S473) by PDK1 and mTORC2, respectively. Once the receptor is activated, a second signaling pathway is mediated by β-arrestins 1 and 2, involving the recruitment of at least β-arrestins, c-Src and Akt. This β-arrestin-scaffolded complex leads to full activation of Akt through PDK1 and mTORC2, which are not associated to the complex. In agreement with these results, assays performed in 3T3-L1 preadipocyte cells indicate that β-arrestins and c-Src are implicated in the activation of Akt in response to ghrelin through the GHS-R1a. In summary this work reveals that c-Src is crucially involved in the ghrelin-mediated Akt activation. Furthermore, the results support the view that β-arrestins act as both scaffolding proteins and signal transducers on Akt activation

    Quantum Oscillations, Colossal Magnetoresistance and Magnetoelastic Interaction in Bilayered Ca3Ru2O7

    Full text link
    We report magnetic and inter-plane transport properties of Ca3Ru2O7 at high magnetic fields and low temperatures. Ca3Ru2O7 with a bilayered orthorhombic structure is a Mott-like system with a narrow charge gap of 0.1eV. Of a host of unusual physical phenomena revealed in this study, a few are particularly intriguing: (1) a collapse of the c-axis lattice parameter at a metal-nonmetal transition, TMI (=48 K), and a rapid increase of TMI with low uniaxial pressure applied along the c-axis; (2) quantum oscillations in the gapped, nonmetallic state for 20 mK<T<6.5 K; (3) tunneling colossal magnetoresistance, which yields a precipitate drop in resistivity by as much as three orders of magnitude; (4) different in-plane anisotropies of the colossal magnetoresistance and magnetization. All results appear to indicate a highly anisotropic ground state and a critical role of coupling between lattice and magnetism. The implication of these phenomena is discussed.Comment: 27 pages, 9 figure
    corecore