46 research outputs found

    Combining fMRI and DISC1 gene haplotypes to understand working memory‑related brain activity in schizophrenia

    Get PDF
    Schizophrenia; Magnetic Resonance Imaging; HaplotypesEsquizofrenia; Resonancia Magnética; HaplotiposEsquizofrènia; Ressonància magnètica; HaplotipsThe DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ

    Altered brain responses to specific negative emotions in schizophrenia

    Get PDF
    Esquizofrènia; Estímuls escènics; fMRIEsquizofrenia; Estímulos escénicos; fMRISchizophrenia; Scenic stimuli; fMRIDeficits in emotion processing are a core feature of schizophrenia, but their neurobiological bases are poorly understood. Previous research, mainly focused on emotional face processing and emotion recognition deficits, has shown controverted results. Furthermore, the use of faces has been questioned for not entailing an appropriate stimulus to study emotional processing. This highlights the importance of investigating emotional processing abnormalities using evocative stimuli. For the first time, we have studied the brain responses to scenic stimuli in patients with schizophrenia. We selected scenes from the IAPS that elicit fear, disgust, happiness, and sadness. Twenty-six patients with schizophrenia and thirty age-, sex- and premorbid IQ-matched healthy controls were included. Behavioral task results show that patients tended to misclassify disgust and sadness as fear. Brain responses in patients were different from controls in images eliciting disgust and fear. In response to disgust images, patients hyperactivated the right temporal cortex, which was not activated by the controls. With fear images, hyperactivation was observed in brain regions involved in fear processing, including midline regions from the medial frontal cortex to the anterior cingulate cortex, the superior frontal gyrus, inferior and superior temporal cortex, and visual areas. These results suggest that schizophrenia is characterized by hyper-responsivity to stimuli evoking high-arousal, negative emotions, and a bias towards fear in emotion recognition

    Autobiographical memory and default mode network function in schizophrenia : an fMRI study

    Get PDF
    The brain functional correlates of autobiographical recall are well established, but have been little studied in schizophrenia. Additionally, autobiographical memory is one of a small number of cognitive tasks that activates rather than de-activates the default mode network, which has been found to be dysfunctional in this disorder. Twenty-seven schizophrenic patients and 30 healthy controls underwent functional magnetic resonance imaging while viewing cue words that evoked autobiographical memories. Control conditions included both non-memory-evoking cues and a low level baseline (cross fixation). Compared to both non-memory evoking cues and low level baseline, autobiographical recall was associated with activation in default mode network regions in the controls including the medial frontal cortex, the posterior cingulate cortex and the hippocampus, as well as other areas. Clusters of de-activation were seen outside the default mode network. There were no activation differences between the schizophrenic patients and the controls, but the patients showed clusters of failure of de-activation in non-default mode network regions. According to this study, patients with schizophrenia show intact activation of the default mode network and other regions associated with recall of autobiographical memories. The finding of failure of de-activation outside the network suggests that schizophrenia may be associated with a general difficulty in de-activation rather than dysfunction of the default mode network per se

    Combining fMRI and DISC1 gene haplotypes to understand working memory-related brain activity in schizophrenia

    Get PDF
    Altres ajuts: Ministerio de Ciencia e Innovación; Fondo Europeo de Desarrollo Regional (FEDER); European Social Fund ("Investing in your future"); Generalitat de Catalunya, Departament de Salut (SLT017/20/000233).The DISC1 gene is one of the most relevant susceptibility genes for psychosis. However, the complex genetic landscape of this locus, which includes protective and risk variants in interaction, may have hindered consistent conclusions on how DISC1 contributes to schizophrenia (SZ) liability. Analysis from haplotype approaches and brain-based phenotypes can contribute to understanding DISC1 role in the neurobiology of this disorder. We assessed the brain correlates of DISC1 haplotypes associated with SZ through a functional neuroimaging genetics approach. First, we tested the association of two DISC1 haplotypes, the HEP1 (rs6675281-1000731-rs999710) and the HEP3 (rs151229-rs3738401), with the risk for SZ in a sample of 138 healthy subjects (HS) and 238 patients. This approach allowed the identification of three haplotypes associated with SZ (HEP1-CTG, HEP3-GA and HEP3-AA). Second, we explored whether these haplotypes exerted differential effects on n-back associated brain activity in a subsample of 70 HS compared to 70 patients (diagnosis × haplotype interaction effect). These analyses evidenced that HEP3-GA and HEP3-AA modulated working memory functional response conditional to the health/disease status in the cuneus, precuneus, middle cingulate cortex and the ventrolateral and dorsolateral prefrontal cortices. Our results are the first to show a diagnosis-based effect of DISC1 haplotypes on working memory-related brain activity, emphasising its role in SZ

    Brain imaging correlates of self- and other-reflection in schizophrenia

    Get PDF
    An alteration in self/other differentiation has been proposed as a basis for several symptoms in schizophrenia, including delusions of reference and social functioning deficits. Dysfunction of the right temporo-parietal junction (TPJ), a region linked with social cognition, has been proposed as the basis of this alteration. However, imaging studies of self- and other-processing in schizophrenia have shown, so far, inconsistent results. Patients with schizophrenia and healthy controls underwent fMRI scanning while performing a task with three conditions: self-reflection, other-reflection and semantic processing. Both groups activated similar brain regions for self- and other-reflection compared to semantic processing, including the medial prefrontal cortex, the precuneus and the TPJ. Compared to healthy subjects, patients hyperactivated the left lateral frontal cortex during self- and other-reflection. In other-reflection, compared to self-reflection, patients failed to increase right TPJ activity. Altered activity in the right TPJ supports a disturbance in self/other differentiation in schizophrenia, which could be linked with psychotic symptoms and affect social functioning in patients. Hyperactivity of the lateral frontal cortex for self- and other-reflection suggests the presence of greater cognitive demand to perform the task in the patient group

    Evaluation of machine learning algorithms and structural features for optimal MRI-based diagnostic prediction in psychosis

    Full text link
    A relatively large number of studies have investigated the power of structural magnetic resonance imaging (sMRI) data to discriminate patients with schizophrenia from healthy controls. However, very few of them have also included patients with bipolar disorder, allowing the clinically relevant discrimination between both psychotic diagnostics. To assess the efficacy of sMRI data for diagnostic prediction in psychosis we objectively evaluated the discriminative power of a wide range of commonly used machine learning algorithms (ridge, lasso, elastic net and L0 norm regularized logistic regressions, a support vector classifier, regularized discriminant analysis, random forests and a Gaussian process classifier) on main sMRI features including grey and white matter voxel-based morphometry (VBM), vertex-based cortical thickness and volume, region of interest volumetric measures and wavelet-based morphometry (WBM) maps. All possible combinations of algorithms and data features were considered in pairwise classifications of matched samples of healthy controls (N = 127), patients with schizophrenia (N = 128) and patients with bipolar disorder (N = 128). Results show that the selection of feature type is important, with grey matter VBM (without data reduction) delivering the best diagnostic prediction rates (averaging over classifiers: schizophrenia vs. healthy 75%, bipolar disorder vs. healthy 63% and schizophrenia vs. bipolar disorder 62%) whereas algorithms usually yielded very similar results. Indeed, those grey matter VBM accuracy rates were not even improved by combining all feature types in a single prediction model. Further multi-class classifications considering the three groups simultaneously made evident a lack of predictive power for the bipolar group, probably due to its intermediate anatomical features, located between those observed in healthy controls and those found in patients with schizophrenia. Finally, we provide MRIPredict (https://www.nitrc.org/projects/mripredict/), a free tool for SPM, FSL and R, to easily carry out voxelwise predictions based on VBM images

    NRN1 Gene as a Potential Marker of Early-Onset Schizophrenia: Evidence from Genetic and Neuroimaging Approaches

    Get PDF
    Included in the neurotrophins family, the Neuritin 1 gene (NRN1) has emerged as an attractive candidate gene for schizophrenia (SZ) since it has been associated with the risk for the disorder and general cognitive performance. In this work, we aimed to further investigate the association of NRN1 with SZ by exploring its role on age at onset and its brain activity correlates. First, we developed two genetic association analyses using a family-based sample (80 early-onset (EO) trios (offspring onset ≤ 18 years) and 71 adult-onset (AO) trios) and an independent case control sample (120 healthy subjects (HS), 87 EO and 138 AO patients). Second, we explored the effect of NRN1 on brain activity during a working memory task (N-back task; 39 HS, 39 EO and 39 AO; matched by age, sex and estimated IQ). Different haplotypes encompassing the same three Single Nucleotide Polymorphisms(SNPs, rs3763180 rs10484320 rs4960155) were associated with EO in the two samples (GCT, TCC and GTT). Besides, the GTT haplotype was associated with worse N-back task performance in EO and was linked to an inefficient dorsolateral prefrontal cortex activity in subjects with EO compared to HS. Our results show convergent evidence on the NRN1 association with EO both from genetic and neuroimaging approaches, highlighting the role of neurotrophins in the pathophysiology of SZ

    Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium

    Full text link
    Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2^{2} = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions

    Brain ageing in schizophrenia: evidence from 26 international cohorts via the ENIGMA Schizophrenia consortium

    Get PDF
    Schizophrenia (SZ) is associated with an increased risk of life-long cognitive impairments, age-related chronic disease, and premature mortality. We investigated evidence for advanced brain ageing in adult SZ patients, and whether this was associated with clinical characteristics in a prospective meta-analytic study conducted by the ENIGMA Schizophrenia Working Group. The study included data from 26 cohorts worldwide, with a total of 2803 SZ patients (mean age 34.2 years; range 18-72 years; 67% male) and 2598 healthy controls (mean age 33.8 years, range 18-73 years, 55% male). Brain-predicted age was individually estimated using a model trained on independent data based on 68 measures of cortical thickness and surface area, 7 subcortical volumes, lateral ventricular volumes and total intracranial volume, all derived from T1-weighted brain magnetic resonance imaging (MRI) scans. Deviations from a healthy brain ageing trajectory were assessed by the difference between brain-predicted age and chronological age (brain-predicted age difference [brain-PAD]). On average, SZ patients showed a higher brain-PAD of +3.55 years (95% CI: 2.91, 4.19; I2 = 57.53%) compared to controls, after adjusting for age, sex and site (Cohen's d = 0.48). Among SZ patients, brain-PAD was not associated with specific clinical characteristics (age of onset, duration of illness, symptom severity, or antipsychotic use and dose). This large-scale collaborative study suggests advanced structural brain ageing in SZ. Longitudinal studies of SZ and a range of mental and somatic health outcomes will help to further evaluate the clinical implications of increased brain-PAD and its ability to be influenced by interventions
    corecore