8 research outputs found

    Academic Human Capital and Research Performance

    Get PDF
    Academic research has been considered a relevant research topic in academia. Universities have emerged as a key agent for innovation and knowledge generation. Recently, universities are betting on a paradigm shift based on research efficiency. In view of the changes in the universities' vision, and with the aim of responding to these new demands, academic research institutions have articulated new types of resources and different management procedures that favour their contribution and commitment to the processes of knowledge generation. Therefore, the determinants of academic researchers' performance have been postulated as variables to be addressed in the field of human resource management. This thesis highlights the role of academic researchers as a unit of analysis. More specifically, this work aims to provide an answer to understanding the relationship between human capital and the research performance of academics, as well as the effect of motivation and opportunity as moderating variables. Human capital at the organisational level has been studied through three main dimensions following the KSA model (Knowledge, Skills, Abilities). This framework is contextualised in the academic environment, considering its particularities. Moreover, motivations and opportunity can enhance human capital advantages and scientific performance. To this end, this thesis also proposes the use of the AMO approach (Abilities as Human Capital, Motivation and Opportunity) as a framework for study in academia. The results of the empirical analysis suggest that there is a direct and positive relationship between human capital and research performance. Our study shows that research knowledge and research abilities drive research activity. However, there is some negative relationship between proactive creativity and research performance. This result is surprising because all dimensions of human capital contribute to performance. Furthermore, the results suggest that motivation and opportunity moderate the relationship between human capital and research performance. From this perspective, the results confirmed the existence of a greater contribution of research motivation than opportunity. In addition, the thesis proposes and validates a scale specifically developed to measure the different dimensions of human capital of academic researchers. The use of this scale allows to consider those attributes necessary for research activity in order to understand the complex nature of the topic. The thesis also provides a measure of the incentives that are perceived by academic researchers as drivers of research activity in an integrative way and at the individual level. To this end, researchers' perception of these incentives could be crucial for the management of research in universities. Finally, this thesis contributes significantly to (1) a better understanding of the research capabilities of academics and, (2) offering new variables to evaluate research performance and the implementation of research incentive policies. This contextualisation of the human capital approach is also related to the analysis of the factors that condition research performance, which favours the introduction and implementation of specific measures for the management of academic staff. Moreover, its application represents a significant contribution, since traditionally the determinants of research performance have been studied from a macro perspective, whereas through this approach we propose to deepen more intrinsic and specific dimensions reseachers.La investigación académica se ha considerado un tópico de investigación relevante en la academia. En la sociedad actual, la Universidad se ha erigido como un agente clave para la innovación y generación de conocimiento. Recientemente, las universidades están apostando por un cambio de paradigma basado en la eficiencia investigadora. Ante los cambios de visión de las universidades, y con objeto de dar respuesta a estas nuevas demandas exigidas, las instituciones de investigación académica han articulado nuevos tipos de recursos y diferentes procedimientos de gestión, que favorecen su aportación y compromiso a los procesos de generación de conocimiento. Por ello, los determinantes del rendimiento de los investigadores académicos se han postulado como variables a tratar en el ámbito de la gestión de los recursos humanos. Esta tesis destaca el rol de los investigadores académicos como unidad de análisis. Más específicamente, este trabajo tiene como objetivo dar respuesta a entender la relación entre el capital humano y el resultado de investigación de los académicos, así como el efecto de la motivación y la oportunidad como variables moderadoras de esa relación. El capital humano en el ámbito organizativo se ha estudiado a través de tres dimensiones principales siguiendo el modelo KSA (conocimiento- Knowledge, habilidades-Skills y competencias-abilities). Este marco se contextualiza en el ámbito académico, considerando las particularidades del mismo. Asimismo, las motivaciones y la oportunidad pueden potenciar las ventajas del capital humano y el rendimiento científico. Para ello, la presente tesis también propone la utilización del enfoque AMO (Abilities como capital humano, motivación y oportunidad) como marco de estudio en el ámbito académico. Los resultados del análisis empírico sugieren que existe una relación directa y positiva entre el capital humano y el rendimiento de investigación. Nuestro estudio refleja que los conocimientos de investigación y las competencias investigadoras impulsan la actividad investigadora. Sin embargo, existe una cierta relación negativa entre la creatividad proactiva y los resultados de investigación. Este resultado sorprende porque la naturaleza del capital humano es que todas las dimensiones contribuyan al rendimiento. Además, los resultados sugieren que la motivación y la oportunidad moderan la relación existente entre el capital humano y el rendimiento de investigación. Desde esta perspectiva, los resultados confirmaron la existencia de una mayor contribución de la motivación investigadora que de la oportunidad. Además, la tesis propone y valida una escala desarrollada específicamente para medir las diferentes dimensiones del capital humano de los investigadores académicos. El uso de esta escala permite tener en cuenta aquellos atributos necesarios para la actividad investigadora con el fin de comprender la naturaleza compleja del tópico. Asimismo, la tesis aporta una medida sobre los incentivos que son percibidos por los investigadores académicos como propulsores de la actividad investigadora de forma integradora y a nivel individual. Para ello, la percepción que tienen los investigadores de estos incentivos podría ser crucial para la gestión de la investigación en las universidades. Por último, señalar que esta tesis contribuye significativamente a (1) una mejor comprensión de las capacidades investigadoras de los académicos y, (2) ofrece nuevas variables para la evaluación del rendimiento de investigación y la implementación de políticas de incentivos en la actividad investigadora. Esta contextualización del enfoque del capital humano también lleva asociado el análisis de los factores que condicionan el desempeño investigador, lo que favorece la implantación y puesta en marcha de medidas específicas de gestión del personal académico. Además, su aplicación supone una novedad significativa, ya que tradicionalmente se han estudiado los factores determinantes de la productividad científica desde una perspectiva macro, mientras que a través de los planteamientos este enfoque profundizaremos en las dimensiones más intrínsecas y específicas del propio investigador académico

    Identifying the determinants of individual scientific performance: A perspective focused on AMO theory

    Get PDF
    Purpose: The aim of this study is to empirically analyse how motivation and the opportunity toinvestigate enhance the direct relation between the researcher’s human capital and individual scientific performance. Design/methodology: Following recent investigations of strategic human capital and the abilities-motivation-opportunity (AMO) theory, we propose a double quantitative-qualitative methodology to identify the determinants of individual scientific performance. Findings: Applying regression analysis to a sample of 471 Spanish academic researchers, we confirm the moderating role of a researcher’s motivation and opportunities. Originality/value: Drawing on the empirical evidence obtained, this work discusses the relevant determinants of scientific productivity, providing practical recommendations for research management and policy makingPeer Reviewe

    Spatiotemporal Characteristics of the Largest HIV-1 CRF02_AG Outbreak in Spain: Evidence for Onward Transmissions

    Get PDF
    Background and Aim: The circulating recombinant form 02_AG (CRF02_AG) is the predominant clade among the human immunodeficiency virus type-1 (HIV-1) non-Bs with a prevalence of 5.97% (95% Confidence Interval-CI: 5.41–6.57%) across Spain. Our aim was to estimate the levels of regional clustering for CRF02_AG and the spatiotemporal characteristics of the largest CRF02_AG subepidemic in Spain.Methods: We studied 396 CRF02_AG sequences obtained from HIV-1 diagnosed patients during 2000–2014 from 10 autonomous communities of Spain. Phylogenetic analysis was performed on the 391 CRF02_AG sequences along with all globally sampled CRF02_AG sequences (N = 3,302) as references. Phylodynamic and phylogeographic analysis was performed to the largest CRF02_AG monophyletic cluster by a Bayesian method in BEAST v1.8.0 and by reconstructing ancestral states using the criterion of parsimony in Mesquite v3.4, respectively.Results: The HIV-1 CRF02_AG prevalence differed across Spanish autonomous communities we sampled from (p < 0.001). Phylogenetic analysis revealed that 52.7% of the CRF02_AG sequences formed 56 monophyletic clusters, with a range of 2–79 sequences. The CRF02_AG regional dispersal differed across Spain (p = 0.003), as suggested by monophyletic clustering. For the largest monophyletic cluster (subepidemic) (N = 79), 49.4% of the clustered sequences originated from Madrid, while most sequences (51.9%) had been obtained from men having sex with men (MSM). Molecular clock analysis suggested that the origin (tMRCA) of the CRF02_AG subepidemic was in 2002 (median estimate; 95% Highest Posterior Density-HPD interval: 1999–2004). Additionally, we found significant clustering within the CRF02_AG subepidemic according to the ethnic origin.Conclusion: CRF02_AG has been introduced as a result of multiple introductions in Spain, following regional dispersal in several cases. We showed that CRF02_AG transmissions were mostly due to regional dispersal in Spain. The hot-spot for the largest CRF02_AG regional subepidemic in Spain was in Madrid associated with MSM transmission risk group. The existence of subepidemics suggest that several spillovers occurred from Madrid to other areas. CRF02_AG sequences from Hispanics were clustered in a separate subclade suggesting no linkage between the local and Hispanic subepidemics

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended genome-wide association meta-analysis of a well-characterized cohort of 3255 COVID-19 patients with respiratory failure and 12 488 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a ~0.9-Mb inversion polymorphism that creates two highly differentiated haplotypes and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative including non-Caucasian individuals, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.S.E.H. and C.A.S. partially supported genotyping through a philanthropic donation. A.F. and D.E. were supported by a grant from the German Federal Ministry of Education and COVID-19 grant Research (BMBF; ID:01KI20197); A.F., D.E. and F.D. were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). D.E. was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). D.E., K.B. and S.B. acknowledge the Novo Nordisk Foundation (NNF14CC0001 and NNF17OC0027594). T.L.L., A.T. and O.Ö. were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. M.W. and H.E. are supported by the German Research Foundation (DFG) through the Research Training Group 1743, ‘Genes, Environment and Inflammation’. L.V. received funding from: Ricerca Finalizzata Ministero della Salute (RF-2016-02364358), Italian Ministry of Health ‘CV PREVITAL’—strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ‘REVEAL’; Fondazione IRCCS Ca’ Granda ‘Ricerca corrente’, Fondazione Sviluppo Ca’ Granda ‘Liver-BIBLE’ (PR-0391), Fondazione IRCCS Ca’ Granda ‘5permille’ ‘COVID-19 Biobank’ (RC100017A). A.B. was supported by a grant from Fondazione Cariplo to Fondazione Tettamanti: ‘Bio-banking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by an MIUR grant to the Department of Medical Sciences, under the program ‘Dipartimenti di Eccellenza 2018–2022’. This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP (The Institute for Health Science Research Germans Trias i Pujol) IGTP is part of the CERCA Program/Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIII-MINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). M.M. received research funding from grant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIII-Subdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (European Regional Development Fund (FEDER)-Una manera de hacer Europa’). B.C. is supported by national grants PI18/01512. X.F. is supported by the VEIS project (001-P-001647) (co-funded by the European Regional Development Fund (ERDF), ‘A way to build Europe’). Additional data included in this study were obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, European Institute of Innovation & Technology (EIT), a body of the European Union, COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. A.J. and S.M. were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). A.J. was also supported by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the European Regional Development Fund (FEDER). The Basque Biobank, a hospital-related platform that also involves all Osakidetza health centres, the Basque government’s Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. M.C. received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). M.R.G., J.A.H., R.G.D. and D.M.M. are supported by the ‘Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III’ (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100) and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón’s team is supported by CIBER of Epidemiology and Public Health (CIBERESP), ‘Instituto de Salud Carlos III’. J.C.H. reports grants from Research Council of Norway grant no 312780 during the conduct of the study. E.S. reports grants from Research Council of Norway grant no. 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). P.K. Bergisch Gladbach, Germany and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF). O.A.C. is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy—CECAD, EXC 2030–390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. K.U.L. is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. F.H. was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to A.R. from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme—Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to A.R. P.R. is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). F.T. is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence ‘Precision Medicine in Chronic Inflammation’ (EXC2167). C.L. and J.H. are supported by the German Center for Infection Research (DZIF). T.B., M.M.B., O.W. und A.H. are supported by the Stiftung Universitätsmedizin Essen. M.A.-H. was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. E.C.S. is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).Peer reviewe

    Detailed stratified GWAS analysis for severe COVID-19 in four European populations

    Get PDF
    Given the highly variable clinical phenotype of Coronavirus disease 2019 (COVID-19), a deeper analysis of the host genetic contribution to severe COVID-19 is important to improve our understanding of underlying disease mechanisms. Here, we describe an extended GWAS meta-analysis of a well-characterized cohort of 3,260 COVID-19 patients with respiratory failure and 12,483 population controls from Italy, Spain, Norway and Germany/Austria, including stratified analyses based on age, sex and disease severity, as well as targeted analyses of chromosome Y haplotypes, the human leukocyte antigen (HLA) region and the SARS-CoV-2 peptidome. By inversion imputation, we traced a reported association at 17q21.31 to a highly pleiotropic ∼0.9-Mb inversion polymorphism and characterized the potential effects of the inversion in detail. Our data, together with the 5th release of summary statistics from the COVID-19 Host Genetics Initiative, also identified a new locus at 19q13.33, including NAPSA, a gene which is expressed primarily in alveolar cells responsible for gas exchange in the lung.Andre Franke and David Ellinghaus were supported by a grant from the German Federal Ministry of Education and Research (01KI20197), Andre Franke, David Ellinghaus and Frauke Degenhardt were supported by the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). David Ellinghaus was supported by the German Federal Ministry of Education and Research (BMBF) within the framework of the Computational Life Sciences funding concept (CompLS grant 031L0165). David Ellinghaus, Karina Banasik and Søren Brunak acknowledge the Novo Nordisk Foundation (grant NNF14CC0001 and NNF17OC0027594). Tobias L. Lenz, Ana Teles and Onur Özer were funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 279645989; 433116033; 437857095. Mareike Wendorff and Hesham ElAbd are supported by the German Research Foundation (DFG) through the Research Training Group 1743, "Genes, Environment and Inflammation". This project was supported by a Covid-19 grant from the German Federal Ministry of Education and Research (BMBF; ID: 01KI20197). Luca Valenti received funding from: Ricerca Finalizzata Ministero della Salute RF2016-02364358, Italian Ministry of Health ""CV PREVITAL – strategie di prevenzione primaria cardiovascolare primaria nella popolazione italiana; The European Union (EU) Programme Horizon 2020 (under grant agreement No. 777377) for the project LITMUS- and for the project ""REVEAL""; Fondazione IRCCS Ca' Granda ""Ricerca corrente"", Fondazione Sviluppo Ca' Granda ""Liver-BIBLE"" (PR-0391), Fondazione IRCCS Ca' Granda ""5permille"" ""COVID-19 Biobank"" (RC100017A). Andrea Biondi was supported by the grant from Fondazione Cariplo to Fondazione Tettamanti: "Biobanking of Covid-19 patient samples to support national and international research (Covid-Bank). This research was partly funded by a MIUR grant to the Department of Medical Sciences, under the program "Dipartimenti di Eccellenza 2018–2022". This study makes use of data generated by the GCAT-Genomes for Life. Cohort study of the Genomes of Catalonia, Fundació IGTP. IGTP is part of the CERCA Program / Generalitat de Catalunya. GCAT is supported by Acción de Dinamización del ISCIIIMINECO and the Ministry of Health of the Generalitat of Catalunya (ADE 10/00026); the Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR) (2017-SGR 529). Marta Marquié received research funding from ant PI19/00335 Acción Estratégica en Salud, integrated in the Spanish National RDI Plan and financed by ISCIIISubdirección General de Evaluación and the Fondo Europeo de Desarrollo Regional (FEDER-Una manera de hacer Europa").Beatriz Cortes is supported by national grants PI18/01512. Xavier Farre is supported by VEIS project (001-P-001647) (cofunded by European Regional Development Fund (ERDF), “A way to build Europe”). Additional data included in this study was obtained in part by the COVICAT Study Group (Cohort Covid de Catalunya) supported by IsGlobal and IGTP, EIT COVID-19 Rapid Response activity 73A and SR20-01024 La Caixa Foundation. Antonio Julià and Sara Marsal were supported by the Spanish Ministry of Economy and Competitiveness (grant numbers: PSE-010000-2006-6 and IPT-010000-2010-36). Antonio Julià was also supported the by national grant PI17/00019 from the Acción Estratégica en Salud (ISCIII) and the FEDER. The Basque Biobank is a hospitalrelated platform that also involves all Osakidetza health centres, the Basque government's Department of Health and Onkologikoa, is operated by the Basque Foundation for Health Innovation and Research-BIOEF. Mario Cáceres received Grants BFU2016-77244-R and PID2019-107836RB-I00 funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU). Manuel Romero Gómez, Javier Ampuero Herrojo, Rocío Gallego Durán and Douglas Maya Miles are supported by the “Spanish Ministry of Economy, Innovation and Competition, the Instituto de Salud Carlos III” (PI19/01404, PI16/01842, PI19/00589, PI17/00535 and GLD19/00100), and by the Andalussian government (Proyectos Estratégicos-Fondos Feder PE-0451-2018, COVID-Premed, COVID GWAs). The position held by Itziar de Rojas Salarich is funded by grant FI20/00215, PFIS Contratos Predoctorales de Formación en Investigación en Salud. Enrique Calderón's team is supported by CIBER of Epidemiology and Public Health (CIBERESP), "Instituto de Salud Carlos III". Jan Cato Holter reports grants from Research Council of Norway grant no 312780 during the conduct of the study. Dr. Solligård: reports grants from Research Council of Norway grant no 312769. The BioMaterialBank Nord is supported by the German Center for Lung Research (DZL), Airway Research Center North (ARCN). The BioMaterialBank Nord is member of popgen 2.0 network (P2N). Philipp Koehler has received non-financial scientific grants from Miltenyi Biotec GmbH, Bergisch Gladbach, Germany, and the Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany. He is supported by the German Federal Ministry of Education and Research (BMBF).Oliver A. Cornely is supported by the German Federal Ministry of Research and Education and is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany's Excellence Strategy – CECAD, EXC 2030 – 390661388. The COMRI cohort is funded by Technical University of Munich, Munich, Germany. Genotyping was performed by the Genotyping laboratory of Institute for Molecular Medicine Finland FIMM Technology Centre, University of Helsinki. This work was supported by grants of the Rolf M. Schwiete Stiftung, the Saarland University, BMBF and The States of Saarland and Lower Saxony. Kerstin U. Ludwig is supported by the German Research Foundation (DFG, LU-1944/3-1). Genotyping for the BoSCO study is funded by the Institute of Human Genetics, University Hospital Bonn. Frank Hanses was supported by the Bavarian State Ministry for Science and Arts. Part of the genotyping was supported by a grant to Alfredo Ramirez from the German Federal Ministry of Education and Research (BMBF, grant: 01ED1619A, European Alzheimer DNA BioBank, EADB) within the context of the EU Joint Programme – Neurodegenerative Disease Research (JPND). Additional funding was derived from the German Research Foundation (DFG) grant: RA 1971/6-1 to Alfredo Ramirez. Philip Rosenstiel is supported by the DFG (CCGA Sequencing Centre and DFG ExC2167 PMI and by SH state funds for COVID19 research). Florian Tran is supported by the Clinician Scientist Program of the Deutsche Forschungsgemeinschaft Cluster of Excellence “Precision Medicine in Chronic Inflammation” (EXC2167). Christoph Lange and Jan Heyckendorf are supported by the German Center for Infection Research (DZIF). Thorsen Brenner, Marc M Berger, Oliver Witzke und Anke Hinney are supported by the Stiftung Universitätsmedizin Essen. Marialbert Acosta-Herrera was supported by Juan de la Cierva Incorporacion program, grant IJC2018-035131-I funded by MCIN/AEI/10.13039/501100011033. Eva C Schulte is supported by the Deutsche Forschungsgemeinschaft (DFG; SCHU 2419/2-1).N

    How do women living with HIV experience menopause? Menopausal symptoms, anxiety and depression according to reproductive age in a multicenter cohort

    Get PDF
    CatedresBackground: To estimate the prevalence and severity of menopausal symptoms and anxiety/depression and to assess the differences according to menopausal status among women living with HIV aged 45-60 years from the cohort of Spanish HIV/AIDS Research Network (CoRIS). Methods: Women were interviewed by phone between September 2017 and December 2018 to determine whether they had experienced menopausal symptoms and anxiety/depression. The Menopause Rating Scale was used to evaluate the prevalence and severity of symptoms related to menopause in three subscales: somatic, psychologic and urogenital; and the 4-item Patient Health Questionnaire was used for anxiety/depression. Logistic regression models were used to estimate odds ratios (ORs) of association between menopausal status, and other potential risk factors, the presence and severity of somatic, psychological and urogenital symptoms and of anxiety/depression. Results: Of 251 women included, 137 (54.6%) were post-, 70 (27.9%) peri- and 44 (17.5%) pre-menopausal, respectively. Median age of onset menopause was 48 years (IQR 45-50). The proportions of pre-, peri- and post-menopausal women who had experienced any menopausal symptoms were 45.5%, 60.0% and 66.4%, respectively. Both peri- and post-menopause were associated with a higher likelihood of having somatic symptoms (aOR 3.01; 95% CI 1.38-6.55 and 2.63; 1.44-4.81, respectively), while post-menopause increased the likelihood of having psychological (2.16; 1.13-4.14) and urogenital symptoms (2.54; 1.42-4.85). By other hand, post-menopausal women had a statistically significant five-fold increase in the likelihood of presenting severe urogenital symptoms than pre-menopausal women (4.90; 1.74-13.84). No significant differences by menopausal status were found for anxiety/depression. Joint/muscle problems, exhaustion and sleeping disorders were the most commonly reported symptoms among all women. Differences in the prevalences of vaginal dryness (p = 0.002), joint/muscle complaints (p = 0.032), and sweating/flush (p = 0.032) were found among the three groups. Conclusions: Women living with HIV experienced a wide variety of menopausal symptoms, some of them initiated before women had any menstrual irregularity. We found a higher likelihood of somatic symptoms in peri- and post-menopausal women, while a higher likelihood of psychological and urogenital symptoms was found in post-menopausal women. Most somatic symptoms were of low or moderate severity, probably due to the good clinical and immunological situation of these women

    COVID-19 in hospitalized HIV-positive and HIV-negative patients : A matched study

    Get PDF
    CatedresObjectives: We compared the characteristics and clinical outcomes of hospitalized individuals with COVID-19 with [people with HIV (PWH)] and without (non-PWH) HIV co-infection in Spain during the first wave of the pandemic. Methods: This was a retrospective matched cohort study. People with HIV were identified by reviewing clinical records and laboratory registries of 10 922 patients in active-follow-up within the Spanish HIV Research Network (CoRIS) up to 30 June 2020. Each hospitalized PWH was matched with five non-PWH of the same age and sex randomly selected from COVID-19@Spain, a multicentre cohort of 4035 patients hospitalized with confirmed COVID-19. The main outcome was all-cause in-hospital mortality. Results: Forty-five PWH with PCR-confirmed COVID-19 were identified in CoRIS, 21 of whom were hospitalized. A total of 105 age/sex-matched controls were selected from the COVID-19@Spain cohort. The median age in both groups was 53 (Q1-Q3, 46-56) years, and 90.5% were men. In PWH, 19.1% were injecting drug users, 95.2% were on antiretroviral therapy, 94.4% had HIV-RNA < 50 copies/mL, and the median (Q1-Q3) CD4 count was 595 (349-798) cells/μL. No statistically significant differences were found between PWH and non-PWH in number of comorbidities, presenting signs and symptoms, laboratory parameters, radiology findings and severity scores on admission. Corticosteroids were administered to 33.3% and 27.4% of PWH and non-PWH, respectively (P = 0.580). Deaths during admission were documented in two (9.5%) PWH and 12 (11.4%) non-PWH (P = 0.800). Conclusions: Our findings suggest that well-controlled HIV infection does not modify the clinical presentation or worsen clinical outcomes of COVID-19 hospitalization

    Characteristics and predictors of death among 4035 consecutively hospitalized patients with COVID-19 in Spain

    No full text
    corecore