21 research outputs found

    Plasma phospholipidomic profile differs between children with phenylketonuria and healthy children

    Get PDF
    Phenylketonuria (PKU) is a disease of the catabolism of phenylalanine (Phe), caused by an impaired function of the enzyme phenylalanine hydroxylase. Therapeutics is based on the restriction of Phe intake, which mostly requires a modification of the diet. Dietary restrictions can lead to imbalances in specific nutrients, including lipids. In the present study, the plasma phospholipidome of PKU and healthy children (CT) was analysed by HILIC-MS/MS and GC-MS. Using this approach, 187 lipid species belonging to 9 different phospholipid classes and 3 ceramides were identified. Principal component analysis of the lipid species dataset showed a distinction between PKU and CT groups. Univariate analysis revealed that 146 species of phospholipids were significantly different between both groups. Lipid species showing significant variation included phosphatidylcholines, containing polyunsaturated fatty acids (PUFA), which were more abundant in PKU. The high level of PUFA-containing lipid species in children with PKU may be related to a diet supplemented with PUFA. This study was the first report comparing the plasma polar lipidome of PKU and healthy children, highlighting that the phospholipidome of PKU children is significantly altered compared to CT. However, further studies with larger cohorts are needed to clarify whether these changes are specific to phenylketonuric children.publishe

    Lipids and phenylketonuria: current evidences pointed the need for lipidomics studies

    Get PDF
    Phenylketonuria (PKU) is the most prevalent inborn error of amino acid metabolism. The disease is due to the deficiency of phenylalanine (Phe) hydroxylase activity, which causes the accumulation of Phe. Early diagnosis through neonatal screening is essential for early treatment implementation, avoiding cognitive impairment and other irreversible sequelae. Treatment is based on Phe restriction in the diet that should be maintained throughout life. High dietary restrictions can lead to imbalances in specific nutrients, notably lipids. Previous studies in PKU patients revealed changes in levels of plasma/serum lipoprotein lipids, as well as in fatty acid profile of plasma and red blood cells. Most studies showed a decrease in important polyunsaturated fatty acids, namely DHA (22:6n-3), AA (20:4n-6) and EPA (20:5n-6). Increased oxidative stress and subsequent lipid peroxidation have also been observed in PKU. Despite the evidences that the lipid profile is changed in PKU patients, more studies are needed to understand in detail how lipidome is affected. As highlighted in this review, mass spectrometry-based lipidomics is a promising approach to evaluate the effect of the diet restrictions on lipid metabolism in PKU patients, monitor their outcome, namely concerning the risk for other chronic diseases, and find possible prognosis biomarkers.publishe

    Dried blood spots in clinical lipidomics: optimization and recent findings

    Get PDF
    Dried blood spots (DBS) are being considered as an alternative sampling method of blood collection that can be used in combination with lipidomic and other omic analysis. DBS are successfully used in the clinical context to collect samples for newborn screening for the measurement of specifc fatty acid derivatives, such as acylcarnitines, and lipids from whole blood for diagnostic purposes. However, DBS are scarcely used for lipidomic analysis and investigations. Lipidomic stud ies using DBS are starting to emerge as a powerful method for sampling and storage in clinical lipidomic analysis, but the major research work is being done in the pre- and analytical steps and procedures, and few in clinical applications. This review presents a description of the impact factors and variables that can afect DBS lipidomic analysis, such as the type of DBS card, haematocrit, homogeneity of the blood drop, matrix/chromatographic efects, and the chemical and physi cal properties of the analyte. Additionally, a brief overview of lipidomic studies using DBS to unveil their application in clinical scenarios is also presented, considering the studies of method development and validation and, to a less extent, for clinical diagnosis using clinical lipidomics. DBS combined with lipidomic approaches proved to be as efective as whole blood samples, achieving high levels of sensitivity and specifcity during MS and MS/MS analysis, which could be a useful tool for biomarker identifcation. Lipidomic profling using MS/MS platforms enables signifcant insights into physiological changes, which could be useful in precision medicine.info:eu-repo/semantics/publishedVersio

    Mitochondrial fatty acid β-oxidation disorders: from disease to lipidomic studies—a critical review

    Get PDF
    Fatty acid oxidation disorders (FAODs) are inborn errors of metabolism (IEMs) caused by defects in the fatty acid (FA) mitochondrial β-oxidation. The most common FAODs are characterized by the accumulation of medium-chain FAs and long-chain (3-hydroxy) FAs (and their carnitine derivatives), respectively. These deregulations are associated with lipotoxicity which affects several organs and potentially leads to life-threatening complications and comorbidities. Changes in the lipidome have been associated with several diseases, including some IEMs. In FAODs, the alteration of acylcarnitines (CARs) and FA profiles have been reported in patients and animal models, but changes in polar and neutral lipid profile are still scarcely studied. In this review, we present the main findings on FA and CAR profile changes associated with FAOD pathogenesis, their correlation with oxidative damage, and the consequent disturbance of mitochondrial homeostasis. Moreover, alterations in polar and neutral lipid classes and lipid species identified so far and their possible role in FAODs are discussed. We highlight the need of mass-spectrometry-based lipidomic studies to understand (epi)lipidome remodelling in FAODs, thus allowing to elucidate the pathophysiology and the identification of possible biomarkers for disease prognosis and an evaluation of therapeutic efficacyinfo:eu-repo/semantics/publishedVersio

    Effect of the aqueous extract of Ginkgo biloba L., Ginkgoaceae, in induced osteoporosis in Wistar rats

    Get PDF
    The objective of this study was to investigate the effect of a 20 day treatment with extract of Ginkgo biloba (EGb) in glucocorticoid-induced-osteoporosis. 36 rats were divided into six groups (n=6): control, osteoporosis, positive control, EGb1 (14 mg EGb/kg/day), EGb2 (28 mg EGb/kg/day) and EGb3 (56 mg EGb/kg/day). Treatments were conducted for twenty days, after osteoporosis was induced. Following euthanasia the femur and mandible of all animals were removed. The left mandible was radiographed to evaluate the cortical and the periodontal bone support (PBS). The histomorphometric analysis was performed on the right mandible and the right femur. The control group was compared with the osteoporosis group (Student's t-test). The other groups were analyzed through ANOVA test followed by Dunnett post-hoc test. There was a significantly reduction in the mesial PBS, in the percentage of the alveolar bone (PAB) of the mandible and percentage of the trabecular bone (PTB) of the femur in the osteoporosis group. There was an increase in the mesial PBS in the positive control group, EGb2 and EGb3. The PAB of the mandible and the PTB of the femur increased in the EGb2 and EGb3 groups. The EGb in the 28 mg/kg and 56 mg/kg doses were effective to increase the mesial PBS, the PAB of the mandible and the PTB of the femur.Este trabalho investigou os efeitos do tratamento por vinte dias com extrato de Ginkgo biloba (EGb) na osteoporose induzida por glicocorticóides. Foram utilizadas 36 ratas divididas em seis grupos (n=6): Controle, osteoporose, controle positivo, EGb1 (14 mg EGb/mg/kg/dia), EGb2 (28 mg EGb/kg/dia) e EGb3 (56 mg EGb/kg/dia). Os tratamentos foram realizados por vinte dias, após a indução da osteoporose. Após a eutanásia foram removidos o fêmur e a mandíbula de todos os animais. A mandíbula esquerda foi radiografada digitalmente para avaliação da cortical e do suporte ósseo periodontal (SOP). A análise histomorfométrica foi realizada no fêmur e mandíbula direitos. O grupo controle foi comparado ao grupo osteoporose (Teste t de Student) e os demais grupos foram submetidos a ANOVA, seguido do teste post-hoc de Dunnett. Houve redução significava do SOP mesial, percentual ósseo alveolar (POA) mandibular, percentual ósseo trabecular (POT) do fêmur no grupo osteoporose. Houve aumento do SOP mesial no grupo controle positivo, EGb2 e EGb3. O POA da mandíbula e o POT do fêmur aumentaram nos grupos EGb2 e EGb3. O EGb nas doses de 28 mg/kg e 56 mg/kg recuperou de forma significativa o SOP mesial, o POA da mandíbula e o POT do fêmur

    Lista de gêneros de Hymenoptera (Insecta) do Espírito Santo, Brasil

    Get PDF
    The first checklist of genera of Hymenoptera from Espírito Santo state, Brazil is presented. A total of 973 genera of Hymenoptera is listed, of which 555 (57%) are recorded for the first time from this state. Ichneumonoidea and Chalcidoidea are the two superfamilies with the most genera, 241 and 203 respectively. Braconidae, with 141 genera, are the richest family.The first checklist of genera of Hymenoptera from Espírito Santo state, Brazil is presented. A total of 973 genera of Hymenoptera is listed, of which 555 (57%) are recorded for the first time from this state. Ichneumonoidea and Chalcidoidea are the two superfamilies with the most genera, 241 and 203 respectively. Braconidae, with 141 genera, are the richest family.Fil: Azevedo, Celso O.. Universidade Federal do Espírito Santo; BrasilFil: Molin, Ana Dal. Texas A&M University; Estados UnidosFil: Penteado-Dias, Angelica. Universidade Federal do São Carlos; BrasilFil: Macedo, Antonio C. C.. Secretaria do Meio Ambiente do Estado de São Paulo; BrasilFil: Rodriguez-V, Beatriz. Universidad Nacional Autónoma de México; MéxicoFil: Dias, Bianca Z. K.. Universidade Federal do Espírito Santo; BrasilFil: Waichert, Cecilia. State University of Utah; Estados UnidosFil: Aquino, Daniel Alejandro. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Smith, David. Smithsonian Institution; Estados UnidosFil: Shimbori, Eduardo M.. Universidade Federal do São Carlos; BrasilFil: Noll, Fernando B.. Universidade Estadual Paulista Julio de Mesquita Filho; BrasilFil: Gibson, Gary. Agriculture and Agri-Food Canada; CanadáFil: Onody, Helena. Universidade Federal do São Carlos; BrasilFil: Carpenter, James M.. American Museum of Natural History; Estados UnidosFil: Lattke, John. Universidad Nacional de Loja; EcuadorFil: Ramos, Kelli dos S.. Universidade de Sao Paulo; BrasilFil: Williams, Kevin. Florida State Collection of Arthropods; Estados UnidosFil: Masner, Lubomir. Agriculture and Agri-Food Canada; CanadáFil: Kimsey, Lynn. University of California; Estados UnidosFil: Tavares, Marcelo T.. Universidade Federal do Espírito Santo; BrasilFil: Olmi, Massimo. Università degli Studi della Tuscia; ItaliaFil: Buffington, Matthew L.. United States Department of Agriculture; Estados UnidosFil: Ohl, Michael. Staatliches Museum fur Naturkunde Stuttgart; AlemaniaFil: Sharkey, Michael. University of Kentucky; Estados UnidosFil: Johnson, Norman F.. Ohio State University; Estados UnidosFil: Kawada, Ricardo. Universidade Federal do Espírito Santo; BrasilFil: Gonçalves, Rodrigo B.. Universidade Federal do Paraná; BrasilFil: Feitosa, Rodrigo. Universidade Federal do Paraná; BrasilFil: Heydon, Steven. University of California; Estados UnidosFil: Guerra, Tânia M.. Universidade Federal do Espírito Santo; BrasilFil: da Silva, Thiago S. R.. Universidade Federal do Espírito Santo; BrasilFil: Costa, Valmir. Instituto Biológico; Brasi
    corecore