61 research outputs found

    Intracerebral delivery of 5-iodo-2'-deoxyuridine in combination with synchrotron stereotactic radiation for the therapy of the F98 glioma.

    Get PDF
    International audienceIodine-enhanced synchrotron stereotactic radiotherapy takes advantage of the radiation dose-enhancement produced by high-Z elements when irradiated with mono-energetic beams of synchrotron X-rays. In this study it has been investigated whether therapeutic efficacy could be improved using a thymidine analogue, 5-iodo-2'-deoxyuridine (IUdR), as a radiosentizing agent. IUdR was administered intracerebrally over six days to F98 glioma-bearing rats using Alzet osmotic pumps, beginning seven days after tumor implantation. On the 14th day, a single 15 Gy dose of 50 keV synchrotron X-rays was delivered to the brain. Animals were followed until the time of death and the primary endpoints of this study were the mean and median survival times. The median survival times for irradiation alone, chemotherapy alone or their combination were 44, 32 and 46 days, respectively, compared with 24 days for untreated controls. Each treatment alone significantly increased the rats' survival in comparison with the untreated group. Their combination did not, however, significantly improve survival compared with that of X-irradiation alone or chemotherapy alone. Further studies are required to understand why the combination of chemoradiotherapy was no more effective than X-irradiation alone

    Gigantism in unique biogenic magnetite at the Paleocene-Eocene Thermal Maximum

    Get PDF
    We report the discovery of exceptionally large biogenic magnetite crystals in clay-rich sediments spanning the Paleocene-Eocene Thermal Maximum (PETM) in a borehole at Ancora, New Jersey. Aside from previously-described abundant bacterial magnetofossils, electron microscopy reveals novel spearhead-like and spindle-like magnetite up to 4 μm long and hexaoctahedral prisms up to 1.4 μm long. Similar to magnetite produced by magnetotactic bacteria, these single-crystal particles exhibit chemical composition, lattice perfection, and oxygen isotopes consistent with an aquatic origin. Electron holography indicates single-domain magnetization despite their large crystal size. We suggest that the development of a thick suboxic zone with high iron bioavailability – a product of dramatic changes in weathering and sedimentation patterns driven by severe global warming – drove diversification of magnetite-forming organisms, likely including eukaryotes

    Exercise induces new cardiomyocyte generation in the adult mammalian heart.

    Get PDF
    Loss of cardiomyocytes is a major cause of heart failure, and while the adult heart has a limited capacity for cardiomyogenesis, little is known about what regulates this ability or whether it can be effectively harnessed. Here we show that 8 weeks of running exercise increase birth of new cardiomyocytes in adult mice (~4.6-fold). New cardiomyocytes are identified based on incorporation of 15N-thymidine by multi-isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid. Furthermore, we demonstrate that exercise after myocardial infarction induces a robust cardiomyogenic response in an extended border zone of the infarcted area. Inhibition of miR-222, a microRNA increased by exercise in both animal models and humans, completely blocks the cardiomyogenic exercise response. These findings demonstrate that cardiomyogenesis can be activated by exercise in the normal and injured adult mouse heart and suggest that stimulation of endogenous cardiomyocyte generation could contribute to the benefits of exercise

    Ultra-structural cell distribution of the melanoma marker iodobenzamide: improved potentiality of SIMS imaging in life sciences

    Get PDF
    BACKGROUND: Analytical imaging by secondary ion mass spectrometry (SIMS) provides images representative of the distribution of a specific ion within a sample surface. For the last fifteen years, concerted collaborative research to design a new ion microprobe with high technical standards in both mass and lateral resolution as well as in sensitivity has led to the CAMECA NanoSims 50, recently introduced onto the market. This instrument has decisive capabilities, which allow biological applications of SIMS microscopy at a level previously inaccessible. Its potential is illustrated here by the demonstration of the specific affinity of a melanoma marker for melanin. This finding is of great importance for the diagnosis and/or treatment of malignant melanoma, a tumour whose worldwide incidence is continuously growing. METHODS: The characteristics of the instrument are briefly described and an example of application is given. This example deals with the intracellular localization of an iodo-benzamide used as a diagnostic tool for the scintigraphic detection of melanic cells (e.g. metastasis of malignant melanoma). B16 melanoma cells were injected intravenously to C(57)BL(6)/J(1)/co mice. Multiple B16 melanoma colonies developed in the lungs of treated animals within three weeks. Iodobenzamide was injected intravenously in tumour bearing mice six hours before sacrifice. Small pieces of lung were prepared for SIMS analysis. RESULTS: Mouse lung B16 melanoma colonies were observed with high lateral resolution. Cyanide ions gave "histological" images of the cell, representative of the distribution of C and N containing molecules (e.g. proteins, nucleic acids, melanin, etc.) while phosphorus ions are mainly produced by nucleic acids. Iodine was detected only in melanosomes, confirming the specific affinity of the drug for melanin. No drug was found in normal lung tissue. CONCLUSION: This study demonstrates the potential of SIMS microscopy, which allows the study of ultra structural distribution of a drug within a cell. On the basis of our observations, drug internalization via membrane sigma receptors can be excluded

    Mycobacterium tuberculosis Exploits Asparagine to Assimilate Nitrogen and Resist Acid Stress during Infection

    Get PDF
    Mycobacterium tuberculosis is an intracellular pathogen. Within macrophages, M. tuberculosis thrives in a specialized membrane-bound vacuole, the phagosome, whose pH is slightly acidic, and where access to nutrients is limited. Understanding how the bacillus extracts and incorporates nutrients from its host may help develop novel strategies to combat tuberculosis. Here we show that M. tuberculosis employs the asparagine transporter AnsP2 and the secreted asparaginase AnsA to assimilate nitrogen and resist acid stress through asparagine hydrolysis and ammonia release. While the role of AnsP2 is partially spared by yet to be identified transporter(s), that of AnsA is crucial in both phagosome acidification arrest and intracellular replication, as an M. tuberculosis mutant lacking this asparaginase is ultimately attenuated in macrophages and in mice. Our study provides yet another example of the intimate link between physiology and virulence in the tubercle bacillus, and identifies a novel pathway to be targeted for therapeutic purposes. © 2014 Gouzy et al

    Tracking cell turnover in human brain using 15N-thymidine imaging mass spectrometry

    Get PDF
    Microcephaly is often caused by an impairment of the generation of neurons in the brain, a process referred to as neurogenesis. While most neurogenesis in mammals occurs during brain development, it thought to continue to take place through adulthood in selected regions of the mammalian brain, notably the hippocampus. However, the generality of neurogenesis in the adult brain has been controversial. While studies in mice and rats have provided compelling evidence for neurogenesis occurring in the adult rodent hippocampus, the lack of applicability in humans of key methods to demonstrate neurogenesis has led to an intense debate about the existence and, in particular, the magnitude of neurogenesis in the adult human brain. Here, we demonstrate the applicability of a powerful method to address this debate, that is, the in vivo labeling of adult human patients with 15N-thymidine, a non-hazardous form of thymidine, an approach without any clinical harm or ethical concerns. 15N-thymidine incorporation into newly synthesized DNA of specific cells was quantified at the single-cell level with subcellular resolution by Multiple-isotype imaging mass spectrometry (MIMS) of brain tissue resected for medical reasons. Two adult human patients, a glioblastoma patient and a patient with drug-refractory right temporal lobe epilepsy, were infused for 24 h with 15N-thymidine. Detection of 15N-positive leukocyte nuclei in blood samples from these patients confirmed previous findings by others and demonstrated the appropriateness of this approach to search for the generation of new cells in the adult human brain. 15N-positive neural cells were easily identified in the glioblastoma tissue sample, and the range of the 15N signal suggested that cells that underwent S-phase fully or partially during the 24 h in vivo labeling period, as well as cells generated therefrom, were detected. In contrast, within the hippocampus tissue resected from the epilepsy patient, none of the 2,000 dentate gyrus neurons analyzed was positive for 15N-thymidine uptake, consistent with the notion that the rate of neurogenesis in the adult human hippocampus is rather low. Of note, the likelihood of detecting neurogenesis was reduced because of (i) the low number of cells analyzed, (ii) the fact that hippocampal tissue was explored that may have had reduced neurogenesis due to epilepsy, and (iii) the labeling period of 24 h which may have been too short to capture quiescent neural stem cells. Yet, overall, our approach to enrich NeuN-labeled neuronal nuclei by FACS prior to MIMS analysis provides a promising strategy to quantify even low rates of neurogenesis in the adult human hippocampus after in vivo15N-thymidine infusion. From a general point of view and regarding future perspectives, the in vivo labeling of humans with 15N-thymidine followed by MIMS analysis of brain tissue constitutes a novel approach to study mitotically active cells and their progeny in the brain, and thus allows a broad spectrum of studies of brain physiology and pathology, including microcephaly

    Dynamic transfer applied to secondary ion imaging over large scanned fields with the nanoSIMS 50 at high mass resolution

    No full text
    International audienceDynamic transfer is an adaptive optical approach used for coupling a scanning ion probe with the mass spectrometer designed for analyzing sputtered ions emanating from the probe impact. Its tuning is of crucial importance for getting uniform signal collection over large scanning fields and therefore scanning images free of vignetting in a context of high mass resolution. Revisiting the optical design of the NanoSIMS 50 instrument, where the same set of lenses focuses the primary ion probe on the sample and collects secondary ions from the sample, led us to develop novel experimental procedures to achieve dynamic transfer tuning and overcome instrumental imperfections. It is the case for scanning distortion that may be induced by the octopole used for correcting probe astigmatism and may cause irreducible vignetting on scanning images. We show that it is possible to develop complete tuning procedures by compromising temporarily on the sharpness of the probe focus. Most importantly, we show that, in a context of high mass resolution, the transfer does not significantly disturb isotopic ratios over large scanned fields provided external coils are properly adjusted to compensate ambient magnetic fields.Deepening the procedures led us to demonstrate that the scanning center of the probe may not coincide with the imaging center of COOL, Coaxial Objective Lenses forming the probe and extracting secondary ions. We have checked that bringing those two centers into coincidence resulted in a better image quality over large fields.In the present work, we show how to handle the secondary beam in order to position it before it enters the spectrometer. That capability is essential for optimizing transmission at high mass resolution by aligning the secondary beam axis on a given entrance axis of the spectrometer.These results led us to propose several instrumental improvements including the crucial interest of an additional octopole upstream in the primary ion probe column to prevent scanning distortion when performing astigmatism correction and the possibility of offsetting primary beam deviating plates to bring scanning and imaging centers in coincidence

    SIMSISH technique does not alter the apparent isotopic composition of bacterial cells.

    Get PDF
    In order to identify the function of uncultured microorganisms in their environment, the SIMSISH method, combining in situ hybridization (ISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) imaging, has been proposed to determine the quantitative uptake of specific labelled substrates by uncultured microbes at the single cell level. This technique requires the hybridization of rRNA targeted halogenated DNA probes on fixed and permeabilized microorganisms. Exogenous atoms are introduced into cells and endogenous atoms removed during the experimental procedures. Consequently differences between the original and the apparent isotopic composition of cells may occur. In the present study, the influence of the experimental procedures of SIMSISH on the isotopic composition of carbon in E. coli cells was evaluated with nanoSIMS and compared to elemental analyser-isotopic ratio mass spectrometer (EA-IRMS) measurements. Our results show that fixation and hybridization have a very limited, reproducible and homogeneous influence on the isotopic composition of cells. Thereby, the SIMSISH procedure minimizes the contamination of the sample by exogenous atoms, thus providing a means to detect the phylogenetic identity and to measure precisely the carbon isotopic composition at the single cell level. This technique was successfully applied to a complex sample with double bromine - iodine labelling targeting a large group of bacteria and a specific archaea to evaluate their specific (13)C uptake during labelled methanol anaerobic degradation
    • …
    corecore