48 research outputs found

    Platform trial design for neurofibromatosis type 1, NF2-related schwannomatosis and non-NF2-related schwannomatosis:A potential model for rare diseases

    Get PDF
    Background Neurofibromatosis type 1, NF2-related schwannomatosis and non-NF2-related schwannomatosis (grouped under the abbreviation "NF") are rare hereditary tumor predisposition syndromes. Due to the low prevalence, variability in the range, and severity of manifestations, as well as limited treatment options, these conditions require innovative trial designs to accelerate the development of new treatments.Methods Within European Patient-Centric Clinical Trial Platforms (EU-PEARL), we designed 2 platform-basket trials in NF. The trials were designed by a team of multidisciplinary NF experts and trial methodology experts.Results The trial will consist of an observational and a treatment period. The observational period will serve as a longitudinal natural history study. The platform trial design and randomization to a sequence of available interventions allow for the addition of interventions during the trial. If a drug does not meet the predetermined efficacy endpoint or reveals unacceptable toxicities, participants may stop treatment on that arm and re-enter the observational period, where they can be re-randomized to a different treatment arm if eligible. Intervention-specific eligibility criteria and endpoints are listed in intervention-specific-appendices, allowing the flexibility and adaptability needed for highly variable and rare conditions like NF.Conclusions These innovative platform-basket trials for NF may serve as a model for other rare diseases, as they will enhance the chance of identifying beneficial treatments through optimal learning from a small number of patients. The goal of these trials is to identify beneficial treatments for NF more rapidly and at a lower cost than traditional, single-agent clinical trials

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 60∘60^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law E−γE^{-\gamma} with index Îł=2.70±0.02 (stat)±0.1 (sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25 (stat)−1.2+1.0 (sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy

    Full text link
    We measure the energy emitted by extensive air showers in the form of radio emission in the frequency range from 30 to 80 MHz. Exploiting the accurate energy scale of the Pierre Auger Observatory, we obtain a radiation energy of 15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV arriving perpendicularly to a geomagnetic field of 0.24 G, scaling quadratically with the cosmic-ray energy. A comparison with predictions from state-of-the-art first-principle calculations shows agreement with our measurement. The radiation energy provides direct access to the calorimetric energy in the electromagnetic cascade of extensive air showers. Comparison with our result thus allows the direct calibration of any cosmic-ray radio detector against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI. Supplemental material in the ancillary file

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays

    Comparative randomized inverse sampling

    No full text
    According with previous literature, we deïŹne randomized inverse sampling for comparing two treatments with respect to a binary response as the random- ized sampling which stops when a total ïŹxed number of successes is observed. We obtain asymptotic distributions for the counting variables involved and show them to be equivalent to the corresponding asymptotic distributions for multinomial sampling, but to give rise to genuinely novel procedures when translated into ïŹnite sample approximations. As the main example, a novel conïŹdence interval for the logarithm of the odds ratio of two success prob- abilities can be constructed in the case of comparative randomized inverse sampling. We discuss this conïŹdence interval in detail, obtain its asymp- totic distribution and discuss its ïŹnite sample properties when compared to multinomial samplin

    Higher Risk of Hypoglycemia with Glimepiride Versus Vildagliptin in Patients with Type 2 Diabetes is not Driven by High Doses of Glimepiride: Divergent Patient Susceptibilities?

    No full text
    In a previously published study, vildagliptin showed a reduced risk of hypoglycemia versus glimepiride as add-on therapy to metformin at similar efficacy. Glimepiride was titrated from a starting dose of 2 mg/day to a maximum dose of 6 mg/day. It is usually assumed that the increased hypoglycemia with glimepiride was driven by the 6 mg/day dose; it was therefore of interest to assess whether the risk of hypoglycemia is also different between vildagliptin and a low (2 mg/day) dose of glimepiride

    Identifying challenges in Neurofibromatosis: a modified Delphi procedure

    Get PDF
    Neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2) and schwannomatosis (SWN) are rare conditions with pronounced variability of clinical expression. We aimed to reach consensus on the most important manifestations meriting the development of drug trials. The five-staged modified Delphi procedure consisted of two questionnaires and a consensus meeting for 40 NF experts, a survey for 63 patient representatives, and a final workshop. In the questionnaires, manifestations were scored on multiple items on a 4-point Likert scale. The highest average scores for NF experts deciding the 'need for new treatment' were for malignant peripheral nerve sheath tumour (MPNST) (4,0) and high grade glioma (HGG) (3,9) for NF1; meningioma (3,9) for NF2 and pain (3,9) for SWN. The patient representatives assigned high scores to all manifestations, with plexiform neurofibroma being highest in NF1 (4,0), vestibular schwannoma in NF2 (4,0), and pain in SWN (3,9). Twelve experts participated in the consensus meeting and prioritised manifestations. MPNST was ranked the highest for NF1, followed by benign peripheral nerve sheath tumours. Tumour manifestations received highest ranking in NF2, and pain was the most prominent problem for SWN. Patient representative ratings for NF1 were similar to the experts' opinions, except that they ranked HGG as the most important manifestation. For NF2 and SWN, the patient representatives agreed with the experts. We conclude that NF experts and patient representatives consent to prioritise development of drug trials for MPNST, benign peripheral nerve sheath tumours, cutaneous manifestations and HGG for NF1; tumours for NF2; and pain for SWN
    corecore