9 research outputs found

    Feeling the heat: Elevated temperature affects male display activity of a lekking grassland bird

    Get PDF
    Most climate-species models relate range margins to long-term mean climate variables but lack mechanistic understanding of the ecological or demographic processes underlying the climate response. We examined the case of a climatically limited edge-of-range population of a medium-sized grassland bird, for which climate responses may involve a behavioural trade-off between temperature stress and reproduction. We hypothesised that temperature will be a limiting factor for the conspicuous, male snort-call display behaviour, and high temperatures would reduce the display activity of male birds. Using remote tracking technology with tri-axial accelerometers we classified and studied the display behaviour of 17 free-ranging male little bustards at 5 sites in the Iberian Peninsula. Display behaviour was related to temperature using two classes of Generalized Additive Mixed Models (GAMMs) at different temporal resolutions. GAMMs showed that temperature, time of the day and Julian date explained variation in display behaviour within the day, with birds snort-calling significantly less during higher temperatures. We also showed that variation in daily snort-call activity was related to average daytime temperatures, with our model predicting an average decrease in daytime snort-call display activity of up to 10.9% for the temperature increases projected by 2100 in this region due to global warming. For little bustards and more widely in lekking grassland birds, reduced display behaviour could impact inter- and intra-sex mating behaviour interactions through sexual selection and mate choice mechanisms, with possible consequences on mating and reproductive success of this species. The study provides a reproducible example for how accelerometer data can be used to answer research questions with important conservation inferences related to the impacts of climate change on a range of taxonomic groups

    Feeling the heat: Elevated temperature affects male display activity of a lekking grassland bird

    Get PDF
    Most climate-species models relate range margins to long-term mean climate variables but lack mechanistic understanding of the ecological or demographic processes underlying the climate response. We examined the case of a climatically limited edge-of-range population of a medium-sized grassland bird, for which climate responses may involve a behavioural trade-off between temperature stress and reproduction. We hypothesised that temperature will be a limiting factor for the conspicuous, male snort-call display behaviour, and high temperatures would reduce the display activity of male birds. Using remote tracking technology with tri-axial accelerometers we classified and studied the display behaviour of 17 free-ranging male little bustards at 5 sites in the Iberian Peninsula. Display behaviour was related to temperature using two classes of Generalized Additive Mixed Models (GAMMs) at different temporal resolutions. GAMMs showed that temperature, time of the day and Julian date explained variation in display behaviour within the day, with birds snort-calling significantly less during higher temperatures. We also showed that variation in daily snort-call activity was related to average daytime temperatures, with our model predicting an average decrease in daytime snort-call display activity of up to 10.9% for the temperature increases projected by 2100 in this region due to global warming. For little bustards and more widely in lekking grassland birds, reduced display behaviour could impact inter- and intra-sex mating behaviour interactions through sexual selection and mate choice mechanisms, with possible consequences on mating and reproductive success of this species. The study provides a reproducible example for how accelerometer data can be used to answer research questions with important conservation inferences related to the impacts of climate change on a range of taxonomic groups

    Paradox incentive structures and rules governing sharing of coastal and marine data in Kenya and Tanzania: Lessons for the Western Indian Ocean

    Get PDF
    Comprehensive and timely data-sharing is essential for effective ocean governance. This institutional analysis investigates pervasive data-sharing barriers in Kenya and Tanzania, using a collective action perspective. Existing data-sharing rules and regulations are examined in respect to boundaries, contextuality and incentive structures, compliance and settlement mechanisms, and integration across scales. Findings show that current institutional configurations create insufficient or incoherent incentives, simultaneously reducing and reproducing sharing barriers. Regional harmonisation efforts and strategically aligned data-sharing institutions are still underdeveloped. This article discusses proposals to increase capacities and incentives for data-sharing, as well as the limitations of the chosen analytical framework. The debate is extended to aspects beyond institutional issues, i.e., structural data-sharing barriers or ethical concerns. Key recommendations include the establishment of more compelling incentives structures for data-sharing, increased funding of capacity-building and sharing infrastructure, and further awareness creation on the importance of data-sharing

    A workflow to integrate ecological monitoring data from different sources

    No full text
    International audiencePrograms and initiatives aiming to protect biodiversity and ecosystems have increased over the last decades in response to their decline. Most of these are based on monitoring data to quantitatively describe trends in biodiversity and ecosystems. The estimation of such trends, at large scales, requires the integration of numerous data from multiple monitoring sites. However, due to the high heterogeneity of data formats and the resulting lack of interoperability, the data integration remains sparsely used and synthetic analyses are often limited to a restricted part of the data available.Here we propose a workflow, comprising four main steps, from data gathering to quality control, to better integrate ecological monitoring data and to create a synthetic dataset that will make it possible to analyse larger sets of monitoring data, including unpublished data.The workflow was designed and applied in the production of the Status of Coral Reefs of the World: 2020 report, where more than two hundred individual datasets were integrated to assess the status and trends of hard coral cover at the global scale. The workflow was applied to two case studies and associated R codes, based on the experience acquired during the production of this report.The proposed workflow allows for the integration of datasets with different levels of taxonomic and spatial precision, with a high degree of reproducibility. It provides a conceptual and technical framework for the integration of ecological monitoring data, allowing for the estimation of temporal trends in biodiversity and ecosystems or to test ecological hypotheses at larger scales

    Coral reef monitoring, reef assessment technologies, and ecosystem-based management

    Get PDF
    Coral reefs are exceptionally biodiverse and human dependence on their ecosystem services is high. Reefs experience significant direct and indirect anthropogenic pressures, and provide a sensitive indicator of coastal ocean health, climate change, and ocean acidification, with associated implications for society. Monitoring coral reef status and trends is essential to better inform science, management and policy, but the projected collapse of reef systems within a few decades makes the provision of accurate and actionable monitoring data urgent. The Global Coral Reef Monitoring Network has been the foundation for global reporting on coral reefs for two decades, and is entering into a new phase with improved operational and data standards incorporating the Essential Ocean Variables (EOVs) (www.goosocean.org/eov) and Framework for Ocean Observing developed by the Global Ocean Observing System. Three EOVs provide a robust description of reef health: hard coral cover and composition, macro-algal canopy cover, and fish diversity and abundance. A data quality model based on comprehensive metadata has been designed to facilitate maximum global coverage of coral reef data, and tangible steps to track capacity building. Improved monitoring of events such as mass bleaching and disease outbreaks, citizen science, and socio-economic monitoring have the potential to greatly improve the relevance of monitoring to managers and stakeholders, and to address the complex and multi-dimensional interactions between reefs and people. A new generation of autonomous vehicles (underwater, surface, and aerial) and satellites are set to revolutionize and vastly expand our understanding of coral reefs. Promising approaches include Structure from Motion image processing, and acoustic techniques. Across all systems, curation of data in linked and open online databases, with an open data culture to maximize benefits from data integration, and empowering users to take action, are priorities. Action in the next decade will be essential to mitigate the impacts on coral reefs from warming temperatures, through local management and informing national and international obligations, particularly in the context of the Sustainable Development Goals, climate action, and the role of coral reefs as a global indicator. Mobilizing data to help drive the needed behavior change is a top priority for coral reef observing systems.This paper benefited from the financial support to the authors provided by their institutions and the grants for research, monitoring and/or coordination they have secured. The development of this manuscript has been supported through ongoing work of the Global Coral Reef Monitoring Network and the Global Ocean Observing System�s Biology and Ecosystems Panel, supported by the International Coral Reef Initiative, United Nations Environment Programme, the United Nations Educational, Scientific and Cultural Organization�s Intergovernmental Oceanographic Commission, and Future Earth among others.Scopu

    Coral Reef Monitoring, Reef Assessment Technologies, and Ecosystem-Based Management

    Get PDF
    Coral reefs are exceptionally biodiverse and human dependence on their ecosystem services is high. Reefs experience significant direct and indirect anthropogenic pressures, and provide a sensitive indicator of coastal ocean health, climate change, and ocean acidification, with associated implications for society. Monitoring coral reef status and trends is essential to better inform science, management and policy, but the projected collapse of reef systems within a few decades makes the provision of accurate and actionable monitoring data urgent. The Global Coral Reef Monitoring Network has been the foundation for global reporting on coral reefs for two decades, and is entering into a new phase with improved operational and data standards incorporating the Essential Ocean Variables (EOVs) (www.goosocean.org/eov) and Framework for Ocean Observing developed by the Global Ocean Observing System. Three EOVs provide a robust description of reef health: hard coral cover and composition, macro-algal canopy cover, and fish diversity and abundance. A data quality model based on comprehensive metadata has been designed to facilitate maximum global coverage of coral reef data, and tangible steps to track capacity building. Improved monitoring of events such as mass bleaching and disease outbreaks, citizen science, and socio-economic monitoring have the potential to greatly improve the relevance of monitoring to managers and stakeholders, and to address the complex and multi- dimensional interactions between reefs and people. A new generation of autonomous vehicles (underwater, surface, and aerial) and satellites are set to revolutionize and vastly expand our understanding of coral reefs. Promising approaches include Structure from Motion image processing, and acoustic techniques. Across all systems, curation of data in linked and open online databases, with an open data culture to maximize benefits from data integration, and empowering users to take action, are priorities. Action in the next decade will be essential to mitigate the impacts on coral reefs from warming temperatures, through local management and informing national and international obligations, particularly in the context of the Sustainable Development Goals, climate action, and the role of coral reefs as a global indicator. Mobilizing data to help drive the needed behavior change is a top priority for coral reef observing systems
    corecore