29 research outputs found

    Automatic multi-seed detection for MR breast image segmentation

    Get PDF
    In this paper an automatic multi-seed detection method for magnetic resonance (MR) breast image segmentation is presented. The proposed method consists of three steps: (1) pre-processing step to locate three regions of interest (axillary and sternal regions); (2) processing step to detect maximum concavity points for each region of interest; (3) breast image segmentation step. Traditional manual segmentation methods require radiological expertise and they usually are very tiring and time-consuming. The approach is fast because the multi-seed detection is based on geometric properties of the ROI. When the maximum concavity points of the breast regions have been detected, region growing and morphological transforms complete the segmentation of breast MR image. In order to create a Gold Standard for method effectiveness and comparison, a dataset composed of 18 patients is selected, accordingly to three expert radiologists of University of Palermo Policlinico Hospital (UPPH). Each patient has been manually segmented. The proposed method shows very encouraging results in terms of statistical metrics (Sensitivity: 95.22%; Specificity: 80.36%; Precision: 98.05%; Accuracy: 97.76%; Overlap: 77.01%) and execution time (4.23 s for each slice)

    Tensor based multichannel reconstruction for breast tumours identification from DCE-MRIs

    Get PDF
    A new methodology based on tensor algebra that uses a higher order singular value decomposition to perform three-dimensional voxel reconstruction from a series of temporal images obtained using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is proposed. Principal component analysis (PCA) is used to robustly extract the spatial and temporal image features and simultaneously de-noise the datasets. Tumour segmentation on enhanced scaled (ES) images performed using a fuzzy C-means (FCM) cluster algorithm is compared with that achieved using the proposed tensorial framework. The proposed algorithm explores the correlations between spatial and temporal features in the tumours. The multi-channel reconstruction enables improved breast tumour identification through enhanced de-noising and improved intensity consistency. The reconstructed tumours have clear and continuous boundaries; furthermore the reconstruction shows better voxel clustering in tumour regions of interest. A more homogenous intensity distribution is also observed, enabling improved image contrast between tumours and background, especially in places where fatty tissue is imaged. The fidelity of reconstruction is further evaluated on the basis of five new qualitative metrics. Results confirm the superiority of the tensorial approach. The proposed reconstruction metrics should also find future applications in the assessment of other reconstruction algorithms

    Increased peri-ductal collagen micro-organization may contribute to raised mammographic density

    Get PDF
    BACKGROUND: High mammographic density is a therapeutically modifiable risk factor for breast cancer. Although mammographic density is correlated with the relative abundance of collagen-rich fibroglandular tissue, the causative mechanisms, associated structural remodelling and mechanical consequences remain poorly defined. In this study we have developed a new collaborative bedside-to-bench workflow to determine the relationship between mammographic density, collagen abundance and alignment, tissue stiffness and the expression of extracellular matrix organising proteins. METHODS: Mammographic density was assessed in 22 post-menopausal women (aged 54–66 y). A radiologist and a pathologist identified and excised regions of elevated non-cancerous X-ray density prior to laboratory characterization. Collagen abundance was determined by both Masson’s trichrome and Picrosirius red staining (which enhances collagen birefringence when viewed under polarised light). The structural specificity of these collagen visualisation methods was determined by comparing the relative birefringence and ultrastructure (visualised by atomic force microscopy) of unaligned collagen I fibrils in reconstituted gels with the highly aligned collagen fibrils in rat tail tendon. Localised collagen fibril organisation and stiffness was also evaluated in tissue sections by atomic force microscopy/spectroscopy and the abundance of key extracellular proteins was assessed using mass spectrometry. RESULTS: Mammographic density was positively correlated with the abundance of aligned periductal fibrils rather than with the abundance of amorphous collagen. Compared with matched tissue resected from the breasts of low mammographic density patients, the highly birefringent tissue in mammographically dense breasts was both significantly stiffer and characterised by large (>80 μm long) fibrillar collagen bundles. Subsequent proteomic analyses not only confirmed the absence of collagen fibrosis in high mammographic density tissue, but additionally identified the up-regulation of periostin and collagen XVI (regulators of collagen fibril structure and architecture) as potential mediators of localised mechanical stiffness. CONCLUSIONS: These preliminary data suggest that remodelling, and hence stiffening, of the existing stromal collagen microarchitecture promotes high mammographic density within the breast. In turn, this aberrant mechanical environment may trigger neoplasia-associated mechanotransduction pathways within the epithelial cell population. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-015-0664-2) contains supplementary material, which is available to authorized users

    Lateral stability and control of a flying wind generator

    Get PDF
    Objectives To objectively evaluate automatic volumetric breast density assessment in Full-Field Digital Mammograms (FFDM) using measurements obtained from breast Magnetic Resonance Imaging (MRI). Material and Methods A commercially available method for volumetric breast density estimation on FFDM is evaluated by comparing volume estimates obtained from 186 FFDM exams including mediolateral oblique (MLO) and cranial-caudal (CC) views to objective reference standard measurements obtained from MRI. Results Volumetric measurements obtained from FFDM show high correlation with MRI data. Pearson’s correlation coefficients of 0.93, 0.97 and 0.85 were obtained for volumetric breast density, breast volume and fibroglandular tissue volume, respectively. Conclusions Accurate volumetric breast density assessment is feasible in Full-Field Digital Mammograms and has potential to be used in objective breast cancer risk models and personalized screening

    Comparison of methods for current-to-prior registration of breast DCE-MRI

    No full text
    The use of prior studies to complement the information in Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI) can help to reduce the currently high false positive ratios. Registration is a fundamental part of this process, as registration algorithms provide automatic correspondences between current and prior studies. The deformable nature of the breast and differences in acquisition protocols make this a particularly challenging problem. In this paper we study three registration algorithms (Affine, SyN and Demons) applied to DCE-MRI images obtained from clinical practice. The methodology followed for this study included using segmentation algorithms in order to focus on the area of the breast. Anatomical landmarks were also added by an expert for evaluation purposes. This allowed us to use an anatomical-landmark-based measure in order to evaluate the quality of registration. Additionally, an image metric was also used for the same purpose. Results, shown to be statistically significant indicate how SyN obtains the best results in terms of the two measures considered

    Automated quality assessment in three-dimensional breast ultrasound images

    No full text
    Automated three-dimensional breast ultrasound (ABUS) is a valuable adjunct to x-ray mammography for breast cancer screening of women with dense breasts. High image quality is essential for proper diagnostics and computer-aided detection. We propose an automated image quality assessment system for ABUS images that detects artifacts at the time of acquisition. Therefore, we study three aspects that can corrupt ABUS images: the nipple position relative to the rest of the breast, the shadow caused by the nipple, and the shape of the breast contour on the image. Image processing and machine learning algorithms are combined to detect these artifacts based on 368 clinical ABUS images that have been rated manually by two experienced clinicians. At a specificity of 0.99, 55% of the images that were rated as low quality are detected by the proposed algorithms. The areas under the ROC curves of the single classifiers are 0.99 for the nipple position, 0.84 for the nipple shadow, and 0.89 for the breast contour shape. The proposed algorithms work fast and reliably, which makes them adequate for online evaluation of image quality during acquisition. The presented concept may be extended to further image modalities and quality aspects

    Deep Learning for Multi-task Medical Image Segmentation in Multiple Modalities

    No full text
    Automatic segmentation of medical images is an important task for many clinical applications. In practice,a wide range of anatomical structures are visualised using different imaging modalities. In this paper,we investigate whether a single convolutional neural network (CNN) can be trained to perform different segmentation tasks. A single CNN is trained to segment six tissues in MR brain images,the pectoral muscle in MR breast images,and the coronary arteries in cardiac CTA. The CNN therefore learns to identify the imaging modality,the visualised anatomical structures,and the tissue classes. For each of the three tasks (brain MRI,breast MRI and cardiac CTA),this combined training procedure resulted in a segmentation performance equivalent to that of a CNN trained specifically for that task,demonstrating the high capacity of CNN architectures. Hence,a single system could be used in clinical practice to automatically perform diverse segmentation tasks without task-specific training
    corecore