1,386 research outputs found
Hand to mouth in a Neandertal : right-handedness in regourdou 1
We describe and analyze a Neandertal postcranial skeleton and dentition, which together show unambiguous signs of right-handedness. Asymmetries between the left and right upper arm in Regourdou 1 were identified nearly 20 years ago, then confirmed by more detailed analyses of the inner bone structure for the clavicle, humerus, radius and ulna. The total pattern of all bones in the shoulder and arm reveals that Regourdou 1 was a right-hander. Confirmatory evidence comes from the mandibular incisors, which display a distinct pattern of right oblique scratches, typical of right-handed manipulations performed at the front of the mouth. Regourdou's right handedness is consistent with the strong pattern of manual lateralization in Neandertals and further confirms a modern pattern of left brain dominance, presumably signally linguistic competence. These observations along with cultural, genetic and morphological evidence indicate language competence in Neandertals and their European precursors
Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1.
BST2/tetherin, an antiviral restriction factor, inhibits the release of enveloped viruses from the cell surface. Human immunodeficiency virus-1 (HIV-1) antagonizes BST2 through viral protein u (Vpu), which downregulates BST2 from the cell surface. We report the crystal structure of a protein complex containing Vpu and BST2 cytoplasmic domains and the core of the clathrin adaptor protein complex 1 (AP1). This, together with our biochemical and functional validations, reveals how Vpu hijacks the AP1-dependent membrane trafficking pathways to mistraffick BST2. Vpu mimics a canonical acidic dileucine-sorting motif to bind AP1 in the cytosol, while simultaneously interacting with BST2 in the membrane. These interactions enable Vpu to build on an intrinsic interaction between BST2 and AP1, presumably causing the observed retention of BST2 in juxtanuclear endosomes and stimulating its degradation in lysosomes. The ability of Vpu to hijack AP-dependent trafficking pathways suggests a potential common theme for Vpu-mediated downregulation of host proteins.DOI: http://dx.doi.org/10.7554/eLife.02362.001
Plasma Membrane-Associated Restriction Factors and Their Counteraction by HIV-1 Accessory Proteins.
The plasma membrane is a site of conflict between host defenses and many viruses. One aspect of this conflict is the host's attempt to eliminate infected cells using innate and adaptive cell-mediated immune mechanisms that recognize features of the plasma membrane characteristic of viral infection. Another is the expression of plasma membrane-associated proteins, so-called restriction factors, which inhibit enveloped virions directly. HIV-1 encodes two countermeasures to these host defenses: The membrane-associated accessory proteins Vpu and Nef. In addition to inhibiting cell-mediated immune-surveillance, Vpu and Nef counteract membrane-associated restriction factors. These include BST-2, which traps newly formed virions at the plasma membrane unless counteracted by Vpu, and SERINC5, which decreases the infectivity of virions unless counteracted by Nef. Here we review key features of these two antiviral proteins, and we review Vpu and Nef, which deplete them from the plasma membrane by co-opting specific cellular proteins and pathways of membrane trafficking and protein-degradation. We also discuss other plasma membrane proteins modulated by HIV-1, particularly CD4, which, if not opposed in infected cells by Vpu and Nef, inhibits viral infectivity and increases the sensitivity of the viral envelope glycoprotein to host immunity
Comparative analysis of the secondary electron yield from carbon nanoparticles and pure water medium
The production of secondary electrons generated by carbon nanoparticles and
pure water medium irradiated by fast protons is studied by means of model
approaches and Monte Carlo simulations. It is demonstrated that due to a
prominent collective response to an external field, the nanoparticles embedded
in the medium enhance the yield of low-energy electrons. The maximal
enhancement is observed for electrons in the energy range where plasmons, which
are excited in the nanoparticles, play the dominant role. Electron yield from a
solid carbon nanoparticle composed of fullerite, a crystalline form of C60
fullerene, is demonstrated to be several times higher than that from liquid
water. Decay of plasmon excitations in carbon-based nanosystems thus represents
a mechanism of increase of the low-energy electron yield, similar to the case
of sensitizing metal nanoparticles. This observation gives a hint for
investigation of novel types of sensitizers to be composed of metallic and
organic parts.Comment: 9 pages, 5 figures; accepted for publication in the Topical Issue
"COST Action Nano-IBCT: Nano-scale processes behind Ion-Beam Cancer Therapy"
of Eur. Phys. J. D. arXiv admin note: text overlap with arXiv:1412.553
The evolution in the stellar mass of Brightest Cluster Galaxies over the past 10 billion years
Using a sample of 98 galaxy clusters recently imaged in the near infra-red
with the ESO NTT, WIYN and WHT telescopes, supplemented with 33 clusters from
the ESO archive, we measure how the stellar mass of the most massive galaxies
in the universe, namely Brightest Cluster Galaxies (BCG), increases with time.
Most of the BCGs in this new sample lie in the redshift range ,
which has been noted in recent works to mark an epoch over which the growth in
the stellar mass of BCGs stalls. From this sample of 132 clusters, we create a
subsample of 102 systems that includes only those clusters that have estimates
of the cluster mass. We combine the BCGs in this subsample with BCGs from the
literature, and find that the growth in stellar mass of BCGs from 10 billion
years ago to the present epoch is broadly consistent with recent semi-analytic
and semi-empirical models. As in other recent studies, tentative evidence
indicates that the stellar mass growth rate of BCGs may be slowing in the past
3.5 billion years. Further work in collecting larger samples, and in better
comparing observations with theory using mock images is required if a more
detailed comparison between the models and the data is to be made.Comment: 15 pages, 8 tables, 7 figures - Accepted for publication in MNRA
News and views: Response to 'Non-metric dental traits and hominin phylogeny' by Carter et al., with additional information on the Arizona State University Dental Anthropology System and phylogenetic 'place' of Australopithecus sediba
Here we respond to Carter and colleagues’ (2013) remarks concerning our Science article (Irish et al., 2013). The goals for that article were to: 1) further characterize Australopithecus sediba by describing 22 Arizona State University Dental Anthropology System (ASUDAS) traits, 2) compare the traits in A. sediba with those previously recorded in other hominin samples, and 3) present initial phylogenetic analyses using these data. Given the subset of traits, out of 125 possible (below), and small A. sediba sample, our conclusion was that the results “further define [the species’] position relative to other genera,” but that “the phylogenetic place of A. sediba has not been settled” (Irish et al., 2013: 1233062–12330624). These goals were met, as a basis for more comprehensive study. Below we summarize and reply to the eight objections of Carter et al. (2013), while: 1) demonstrating that there is a strong theoretical basis for using the ASUDAS in phylogenetic analyses, 2) presenting results (which corroborate previous cladistic analyses) that are congruent using different methodological approaches, and 3) introducing new results using a second outgroup, Pan troglodytes, that fully uphold our original analysis
New models for PIXE simulation with Geant4
Particle induced X-ray emission (PIXE) is a physical effect that is not yet
adequately modelled in Geant4. The current status as in Geant4 9.2 release is
reviewed and new developments are described. The capabilities of the software
prototype are illustrated in application to the shielding of the X-ray
detectors of the eROSITA telescope on the upcoming Spectrum-X-Gamma space
mission.Comment: To be published in the Proceedings of the CHEP (Computing in High
Energy Physics) 2009 conferenc
Radiation dose enhancement at tissue-tungsten interfaces in HDR brachytherapy
© 2014 Institute of Physics and Engineering in Medicine. HDR BrachyView is a novel in-body dosimetric imaging system for real-time monitoring and verification of the source position in high dose rate (HDR) prostate brachytherapy treatment. It is based on a high-resolution pixelated detector array with a semi-cylindrical multi-pinhole tungsten collimator and is designed to fit inside a compact rectal probe, and is able to resolve the 3D position of the source with a maximum error of 1.5 mm. This paper presents an evaluation of the additional dose that will be delivered to the patient as a result of backscatter radiation from the collimator. Monte Carlo simulations of planar and cylindrical collimators embedded in a tissue-equivalent phantom were performed using Geant4, with an 192Ir source placed at two different source-collimator distances. The planar configuration was replicated experimentally to validate the simulations, with a MOSkin dosimetry probe used to measure dose at three distances from the collimator. For the cylindrical collimator simulation, backscatter dose enhancement was calculated as a function of axial and azimuthal displacement, and dose distribution maps were generated at three distances from the collimator surface. Although significant backscatter dose enhancement was observed for both geometries immediately adjacent to the collimator, simulations and experiments indicate that backscatter dose is negligible at distances beyond 1 mm from the collimator. Since HDR BrachyView is enclosed within a 1 mm thick tissue-equivalent plastic shell, all backscatter radiation resulting from its use will therefore be absorbed before reaching the rectal wall or other tissues. dosimetry, brachytherapy, HD
Recommended from our members
Dental evidence for ontogenetic differences between modern humans and Neanderthals
Humans have an unusual life history, with an early weaning age, long childhood, late first reproduction, short interbirth intervals, and long lifespan. In contrast, great apes wean later, reproduce earlier, and have longer intervals between births. Despite 80 y of speculation, the origins of these developmental patterns in Homo sapiens remain unknown. Because they record daily growth during formation, teeth provide important insights, revealing that australopithecines and early Homo had more rapid ontogenies than recent humans. Dental development in later Homo species has been intensely debated, most notably the issue of whether Neanderthals and H. sapiens differ. Here we apply synchrotron virtual histology to a geographically and temporally diverse sample of Middle Paleolithic juveniles, including Neanderthals, to assess tooth formation and calculate age at death from dental microstructure. We find that most Neanderthal tooth crowns grew more rapidly than modern human teeth, resulting in significantly faster dental maturation. In contrast, Middle Paleolithic H. sapiens juveniles show greater similarity to recent humans. These findings are consistent with recent cranial and molecular evidence for subtle developmental differences between Neanderthals and H. sapiens. When compared with earlier hominin taxa, both Neanderthals and H. sapiens have extended the duration of dental development. This period of dental immaturity is particularly prolonged in modern humans.Human Evolutionary Biolog
- …
