139 research outputs found
Carbonic anhydrase inhibitor coated gold nanoparticles selectively inhibit the tumor-associated isoform IX over the cytosolic isozymes I and II.
International audienc
Про водогосподарський комплекс Криму
В статье дается определение понятия "водохозяйственный комплекс региона". Приводятся количественные и качественные характеристики состояния развития этой отрасли в АРК. Делаются выводы и предложения относительно повышения эффективности функционирования отрасли, улучшению качества предоставляемых услуг.У статті дається визначення поняття "водогосподарський комплекс регіону". Приводяться кількісні і якісні характеристики стану розвитку цієї галузі в АРК. Робляться висновки й пропозиції щодо підвищення ефективності функціонування галузі, поліпшенню якості надаваних послуг.There is given the definition of concept "a water complex of the region" in this article. Quantitative are resulted and qualitative behaviors of a condition of development of this area in АRК. The conclusions and proposals concerning increase of efficiency of operation of area, improvement of the quality of rendered services are done
Near-infrared luminescent and magnetic cyano-bridged coordination polymers Nd(phen)(n)(DMF)(m)[M(CN)(8)] (M = Mo, W)
New cyano-bridged coordination polymers [Nd(phen)(2)(DMF)(2)(H(2)O)Mo(CN)(8)] center dot 2H(2)O (1) and [Nd(phen)(DMF)(5)M(CN)(8)] center dot xH(2)O [M = Mo (2), W (3); phen = 1,10-phenanthroline] have one-dimensional structures with variable number of phenanthroline ligands. Compounds exhibit photoluminescence in the near-infrared region and ferromagnetic Nd(3+)-M(5+) interactions
Low-temperature anomalies in muon spin relaxation of solid and hollow nanoparticles: a pathway to detect unusual local spin dynamics
By means of muon spin relaxation measurements we unraveled the temperature spin dynamics in monodisperse maghemite spherical nanoparticles with different surface to volume ratio, in two samples with a full core (diameter D∼4 and D∼5nm) and one with a hollow core (external diameter D∼7.4nm). The behavior of the muon longitudinal relaxation rates as a function of temperature allowed us to identify two distinct spin dynamics. The first is well witnessed by the presence of a characteristic peak for all the samples around the so-called muon blocking temperature T. A Bloembergen-Purcell-Pound (BPP)-like model reproduces the experimental data around the peak and at higher temperatures (20<T<100K) by assuming the Néel reversal time of the magnetization as the dominating correlation time. An additional dynamic emerges in the samples with higher surface to volume ratio, namely, full 4 nm and hollow samples. This is witnessed by a shoulder of the main peak for T<20K at low longitudinal field (μH≈15mT), followed by an abrupt increase of the relaxation rate at T<10K, which is more evident for the hollow sample. These unusual anomalies of the longitudinal relaxation rate for T<T are suggested to be due to the surface spins’ dynamical behavior. Furthermore, for weak applied longitudinal magnetic field (μH≈15mT) and T<T we observed damped coherent oscillations of the muon asymmetry, which are a signature of a quasistatic local field at the muon site as probed by muons implanted in the inner magnetic core of the nanoparticles. The muon spin relaxation technique turns out to be very successful to study the magnetic behavior of maghemite nanoparticles and to detect their unusual local spin dynamics in low magnetic field conditions
Controlled Anchoring of Iron-Oxide Nanoparticles on Polymeric Nanofibers: Easy Access to Core@Shell Organic-Inorganic Nanocomposites for Magneto-Scaffolds
Composites combining superparamagnetic iron oxide nanoparticles (SPIONs) and polymers are largely present in modern (bio)materials. However, while SPIONs embedded in polymer matrices are classically reported, the mechanical and degradation properties of the polymer scaffold are impacted by the SPIONs. Therefore, the controlled anchoring of SPIONs onto polymer surfaces is still a major challenge. Herein, we propose an efficient strategy for the direct and uniform anchoring of SPIONs on the surface of functionalized-polylactide (PLA) nanofibers via a simple free ligand exchange procedure to design PLA@SPIONs core@shell nanocomposites. The resulting PLA@SPIONs hybrid biomaterials are characterized by electron microscopy (SEM and TEM) and EDXS analysis, to probe the morphology and detect elements present at the organic/inorganic interface, respectively. A monolayer of SPIONs with a complete and homogeneous coverage is observed on the surface of PLA nanofibers. Magnetization experiments show that magnetic properties of the nanoparticles are well-preserved after their grafting on the PLA fibers and that the size of the nanoparticles does not change. The absence of cytotoxicity, combined with a high sensitivity of detection in MRI both in vitro and in vivo make these hybrid nanocomposites attractive for the development of magnetic biomaterials for biomedical applications
Magnetic Water-Soluble Cyano-Bridged Metal Coordination Nano-polymers
International audienc
Magnetic Water-Soluble Cyano-Bridged Metal Coordination Nano-polymers
International audienc
- …