11 research outputs found

    A Modified MPS Method with a Split-Pressure Poisson Equation and a Virtual Particle for Simulating Free Surface Flows

    No full text
    As a Lagrangian mesh-free method, the moving particle semi-implicit (MPS) method can easily handle complex incompressible flow with a free surface. However, some deficiencies of the MPS method, such as inaccurate results, unphysical pressure oscillation, and particle thrust near the free surface, still need to be further resolved. Here, we propose a modified MPS method that uses the following techniques: (1) a modified MPS scheme with a split-pressure Poisson equation is proposed to reproduce hydrostatic pressure stably; (2) a new virtual particle technique is developed to ensure the symmetrical distribution of particles on the free surface; (3) a Laplacian operator that is consistent with the original gradient operator is introduced to replace the original Laplacian operator. In addition, a two-judgment technique for distinguishing free surface particles is introduced in the proposed MPS method. Four free surface flows were adopted to verify the proposed MPS method, including two hydrostatic problems, a dam-breaking problem, and a violent sloshing problem. The enhancement of accuracy and stability by these improvements was demonstrated. Moreover, the numerical results of the proposed MPS method showed good agreement with analytical solutions and experimental results

    Glycosyltransferase FvCpsA Regulates Fumonisin Biosynthesis and Virulence in Fusarium verticillioides

    No full text
    Fusarium verticillioides is the major maize pathogen associated with ear rot and stalk rot worldwide. Fumonisin B1 (FB1) produced by F. verticillioides, poses a serious threat to human and animal health. However, our understanding of FB1 synthesis and virulence mechanism in this fungus is still very limited. Glycosylation catalyzed by glycosyltransferases (GTs) has been identified as contributing to fungal infection and secondary metabolism synthesis. In this study, a family 2 glycosyltransferase, FvCpsA, was identified and characterized in F. verticillioides. ΔFvcpsA exhibited significant defects in vegetative growth. Moreover, ΔFvcpsA also increased resistance to osmotic and cell wall stress agents. In addition, expression levels of FUM genes involved in FB1 production were greatly up-regulated in ΔFvcpsA. HPLC (high performance liquid chromatography) analysis revealed that ΔFvcpsA significantly increased FB1 production. Interestingly, we found that the deletion of FvCPSA showed penetration defects on cellophane membrane, and thus led to obvious defects in pathogenicity. Characterization of FvCpsA domain experiments showed that conserved DXD and QXXRW domains were vital for the biological functions of FvCpsA. Taken together, our results indicate that FvCpsA is critical for fungal growth, FB1 biosynthesis and virulence in F. verticillioides

    Mechanism of ozone adsorption and activation on B-, N-, P-, and Si-doped graphene: A DFT study

    No full text
    The detailed evolution mechanism of O-3 into Reactive oxygen species (ROS) is of paramount importance but remains elusive in catalytic ozonation. Herein, we report a density functional theory study to comprehensively reveal the specific evolution processes of O-3 into ROS on the B-, N-, P-, and Si-doped graphene, including the adsorption, decomposition and ROS generation. In contrast to some previous reports that O-3 would directly decompose into effective ROS on catalysts, our results indicate that after O-3 adsorption, the decomposition products are ground state O-2 and the adsorbed oxygen species (O-ads). The O-ads is more likely to act as a crucial intermediate for generating other ROS instead of directly attacking the organics. The type of the ROS and generation efficiency vary with the doped heteroatoms, and the heteroatoms of B, P and Si, or the neighboring C of N, would serve as active sites for O-3 adsorption and decomposition. The N-and P-doped graphene are predicted to have the superior performance in ROS generation and catalytic stability. Finally, twenty representative descriptors were adopted to build the quantitative structure-activity relationship (QSAR) with the activation energy barrier of O-3 decomposition. The result indicates that condensed dual descriptor (CDD) could be useful for preliminarily selecting the modified graphene catalysts, since it shows a very good linear relation with the activation energy barrier. This contribution provides an alternative way to gain fundamental insights into the mechanism of catalytic ozonation at the molecular level, and could be helpful for designing more-efficient catalysts in environmental remediation

    Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective Nanocarbons: A DFT and Machine Learning Study

    No full text
    N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O-3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O-3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O-3 decomposes into an adsorbed atomic oxygen species (O-ads) and an O-3(2) on the active sites. The atomic charge and spin population on the O-ads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O-3 could be activated into O-1(2) in addition to O-3(2). The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O-3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature

    Insights into the Mechanism of Ozone Activation and Singlet Oxygen Generation on N-Doped Defective Nanocarbons: A DFT and Machine Learning Study

    No full text
    N-doped defective nanocarbon (N-DNC) catalysts have been widely studied due to their exceptional catalytic activity in many applications, but the O-3 activation mechanism in catalytic ozonation of N-DNCs has yet to be established. In this study, we systematically mapped out the detailed reaction pathways of O-3 activation on 10 potential active sites of 8 representative configurations of N-DNCs, including the pyridinic N, pyrrolic N, N on edge, and porphyrinic N, based on the results of density functional theory (DFT) calculations. The DFT results indicate that O-3 decomposes into an adsorbed atomic oxygen species (O-ads) and an O-3(2) on the active sites. The atomic charge and spin population on the O-ads species indicate that it may not only act as an initiator for generating reactive oxygen species (ROS) but also directly attack the organics on the pyrrolic N. On the N site and C site of the N4V2 system (quadri-pyridinic N with two vacancies) and the pyridinic N site at edge, O-3 could be activated into O-1(2) in addition to O-3(2). The N4V2 system was predicted to have the best activity among the N-DNCs studied. Based on the DFT results, machine learning models were utilized to correlate the O-3 activation activity with the local and global properties of the catalyst surfaces. Among the models, XGBoost performed the best, with the condensed dual descriptor being the most important feature

    Gas-water interface engineered exceptional photoconversion of fatty acids to olefins

    No full text
    Gas-water interface mediated photoconversion of renewable biomass into fuels is a promising strategy to mitigate the impending environmental pollution and energy crisis. Herein, a gas-water interface is engineered to photoconvert fatty acids (FAs, C-6-C-9) into gaseous Cn-2 linear alpha-olefins (LAOs) with a high selectivity (87-91%) under mild conditions; especially, experiments with different interfaces demonstrate that the gas-water interface plays a crucial role in the enhanced selective production. The thinner molecular layer and ordered packing significantly promote the production of LAOs by maximizing the hydrogen bonding between FAs and interfacial water molecules. Furthermore, density functional theory (DFT) calculations, at the molecular level, elaborate that interfacial water could activate the reactions through hydrogen bonding lowering the reaction barrier of initial photoreaction of FAs. Additionally, different atmospheres are found to impact the pathways and products of photoconversion, thus enabling the controllable synthesis of LAOs. Unlike the metal/enzyme-involved harsh catalytic system, the gas-water interface serves as a green, low-cost and efficient 'venue' which can be infinitely reused for hydrocarbon production, pioneering a new way for mitigating the energy crisis and developing a truly green and sustainable society
    corecore