133 research outputs found

    Cremation among the Lucanians

    Get PDF

    Size resolved aerosol respiratory doses in a Mediterranean urban area: From PM10 to ultrafine particles

    Get PDF
    In the framework of the 2017 "carbonaceous aerosol in Rome and Environs" (CARE) experiment, particle number size distributions have been continuously measured on February 2017 in downtown Rome. These data have been used to estimate, through MPPD model, size and time resolved particle mass, surface area and number doses deposited into the respiratory system. Dosimetry estimates are presented for PM10, PM2.5, PM1 and Ultrafine Particles (UFPs), in relation to the aerosol sources peculiar to the Mediterranean basin and to the atmospheric conditions. Particular emphasis is focused on UFPs and their fraction deposited on the olfactory bulb, in view of their possible translocation to the brain. The site of PM10 deposition within the respiratory system considerably changes, depending on the aerosol sources and then on its different size distributions. On making associations between health endpoints and aerosol mass concentrations, the relevant coarse and fine fractions would be more properly adopted, because they have different sources, different capability of penetrating deep into the respiratory system and different toxicological implications. The separation between them should be set at 1ʔm, rather than at 2.5ʔm, because the fine fraction is considerably less affected by the contribution of the natural sources. Mass dose is a suitable metric to describe coarse aerosol events but gives a poor representation of combustion aerosol. This fraction of particles, made of UFPs and of accumulation mode particles (mainly with size below 0.2ʔm), is of high health relevance. It elicited the highest oxidative activity in the CARE experiment and is properly described by the particle surface area and by the number metrics. Such metrics are even more relevant for the UFP doses deposited on the olfactory bulb, in consideration of the role recognized to oxidative stress in the progression of neurodegenerative diseases. Such metrics would be more appropriate, rather than PMx mass concentrations, to correlate neurodegenerative pathologies with aerosol pollution

    Impact of tire debris on in vitro and in vivo systems

    Get PDF
    BACKGROUND: It is estimated that over 80% of respirable particulate matter (PM(10)) in cities comes from road transport and that tire and brake wear are responsible for the 3–7% emission of it. Data on the indicators of environmental impact of tire debris (TD), originated from the tire abrasion on roads, are extremely scarce, even though TD contains chemicals (zinc and organic compounds) which can be released in the environment. METHODS: TD particle morphology was analysed with SEM, TEM and FIB instruments. TD eluates and TD organic extracts were tested at dilution series on human cell lines and Xenopus laevis embryos. 50 and 100 g/L TD were used for the eluates obtained after 24 h at pH 3 and the quantity of zinc present was measured with a ICP-AES. Eluates diluted to 1%, 10%, 50% in culture media and undiluted were used on X. laevis embryos in the FETAX test. HepG2 cells were exposed for 24 h to 0.05 – 50 ÎŒg/ml of zinc salt while A549 cells were exposed for 24, 48 and 72 h to 10, 50, 60, or 75 ÎŒg/ml of TD extract. X. laevis embryos were exposed to 50, 80, 100, or 120 ÎŒg/ml TD extract. RESULTS: The solution of undiluted 50 g/L TD produced 80.2% mortality (p < 0.01) in X. laevis embryos and this toxic effect was three times greater than that produced by 100 g/L TD. Zn accumulation in HepG2 cells was evident after 4 h exposure. A549 cells exposed to TD organic extract for 72 h presented a modified morphology, a decrease in cell proliferation and an increase in DNA damage as shown by comet assay. The dose 80 ÎŒg/ml of TD extract produced 14.6% mortality in X. laevis embryos and 15.9% mortality at 120 ÎŒg/ml. Treatment with 80, 100, or 120 ÎŒg/ml TD organic extract increased from 14.8% to 37.8% malformed larvae percentages compared to 5.6% in the control. CONCLUSION: Since the amount of Zn leached from TD is related to pH, aggregation of particles and elution process, the quantity of TD present in the environment has to be taken into account. Moreover the atmospheric conditions, which may deeply influence the particle properties, have to be considered. The TD organic fraction was toxic for cells and organisms. Thus, because of its chemical components, TD may have a potential environmental impact and has to be further investigated

    Transcriptional profiling of human bronchial epithelial cell BEAS-2B exposed to diesel and biomass ultrafine particles

    Get PDF
    Background: Emissions from diesel vehicles and biomass burning are the principal sources of primary ultrafine particles (UFP). The exposure to UFP has been associated to cardiovascular and pulmonary diseases, including lung cancer. Although many aspects of the toxicology of ambient particulate matter (PM) have been unraveled, the molecular mechanisms activated in human cells by the exposure to UFP are still poorly understood. Here, we present an RNA-seq time-course experiment (five time point after single dose exposure) used to investigate the differential and temporal changes induced in the gene expression of human bronchial epithelial cells (BEAS-2B) by the exposure to UFP generated from diesel and biomass combustion. A combination of different bioinformatics tools (EdgeR, next-maSigPro and reactome FI app-Cytoscape and prioritization strategies) facilitated the analyses the temporal transcriptional pattern, functional gene set enrichment and gene networks related to cellular response to UFP particles.Results: The bioinformatics analysis of transcriptional data reveals that the two different UFP induce, since the earliest time points, different transcriptional dynamics resulting in the activation of specific genes. The functional enrichment of differentially expressed genes indicates that the exposure to diesel UFP induces the activation of genes involved in TNFa signaling via NF-kB and inflammatory response, and hypoxia. Conversely, the exposure to ultrafine particles from biomass determines less distinct modifications of the gene expression profiles. Diesel UFP exposure induces the secretion of biomarkers associated to inflammation (CCXL2, EPGN, GREM1, IL1A, IL1B, IL6, IL24, EREG, VEGF) and transcription factors (as NFE2L2, MAFF, HES1, FOSL1, TGIF1) relevant for cardiovascular and lung disease. By means of network reconstruction, four genes (STAT3, HIF1a, NFKB1, KRAS) have emerged as major regulators of transcriptional response of bronchial epithelial cells exposed to diesel exhaust.Conclusions: Overall, this work highlights modifications of the transcriptional landscape in human bronchial cells exposed to UFP and sheds new lights on possible mechanisms by means of which UFP acts as a carcinogen and harmful factor for human health

    Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive. Insights from Italy

    Get PDF
    Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of “monitoring air pollution impacts” on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42− deposition strongly decreased in all monitoring sites in Italy over the period 1999–2017, while NO3− and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h−1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD

    Report on the activity of the GILDA-CRG beamline 2009-2013

    Get PDF
    Index Technical description of the beamline..................................................................................................3 Introduction ....................................................................................................................................3 Optics..............................................................................................................................................3 The XAS end station........................................................................................................................6 Standard data collection setup.....................................................................................................6 Surface XAS apparata.................................................................................................................8 Recent sample environment and Instrumentation developments................................................9 The x-ray diffraction (XRD) end-station.......................................................................................13 Beamline control...........................................................................................................................14 Administrative aspects........................................................................................................................16 Organisation..................................................................................................................................16 Beamline Staff Situation................................................................................................................17 Statistical data on Users and scientific production.............................................................................21 Future perspectives and plans for upgrade.........................................................................................25 Aim of the project.........................................................................................................................25 Design...........................................................................................................................................26 Timetable......................................................................................................................................31 Overview of the overall scientific activity.........................................................................................33 Selection of five publications........................................................................................................33 Highlights of the scientific activity................................................................................................34 Local order in semiconductors..................................................................................................34 Nanotechnology.......................................................................................................................44 Cements and porous systems....................................................................................................48 Chemistry.................................................................................................................................56 Earth Science............................................................................................................................61 Environment.............................................................................................................................67 Cultural Heritage.......................................................................................................................72 Health, medicine and life science .............................................................................................77 Acknowledgements...........................................................................................................................84 References.........................................................................................................................................85 Generic References.......................................................................................................................85 GILDA 2009-2013 Publications....................................................................................................8
    • 

    corecore