17,927 research outputs found

    Glassy Dynamics in a Frustrated Spin System: Role of Defects

    Full text link
    In an effort to understand the glass transition, the kinetics of a spin model with frustration but no quenched randomness has been analyzed. The phenomenology of the spin model is remarkably similiar to that of structural glasses. Analysis of the model suggests that defects play a major role in dictating the dynamics as the glass transition is approached.Comment: 9 pages, 5 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    A Cosmological Model with Dark Spinor Source

    Full text link
    In this paper, we discuss the system of Friedman-Robertson-Walker metric coupling with massive nonlinear dark spinors in detail, where the thermodynamic movement of spinors is also taken into account. The results show that, the nonlinear potential of the spinor field can provide a tiny negative pressure, which resists the Universe to become singular. The solution is oscillating in time and closed in space, which approximately takes the following form g_{\mu\nu}=\bar R^2(1-\delta\cos t)^2\diag(1,-1,-\sin^2r ,-\sin^2r \sin^2\theta), with Rˉ=(1∼2)×1012\bar R= (1\sim 2)\times 10^{12} light year, and δ=0.96∼0.99\delta=0.96\sim 0.99. The present time is about t∼18∘t\sim 18^\circ.Comment: 13 pages, no figure, to appear in IJMP

    Unusual photoemission resonances of oxygen-dopant induced states in Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x}

    Full text link
    We have performed an angular-resolved photoemission study of underdoped, optimally doped and overdoped Bi2_{2}Sr2_2CaCu2_2O8+x_{8+x} samples using a wide photon energy range (15 - 100 eV). We report a small and broad non-dispersive A1g_{1g} peak in the energy distribution curves whose intensity scales with doping. We attribute it to a local impurity state similar to the one observed recently by scanning tunneling spectroscopy and identified as the oxygen dopants. Detailed analysis of the resonance profile and comparison with the single-layered Bi2_{2}Sr2_2CuO6+x_{6+x} suggest a mixing of this local state with Cu via the apical oxygens.Comment: 4 pages, 4 figure

    Tropical forest restoration: Fast resilience of plant biomass contrasts with slow recovery of stable soil C stocks

    Get PDF
    Due to intensifying human disturbance, over half of the world's tropical forests are reforested or afforested secondary forests or plantations. Understanding the resilience of carbon (C) stocks in these forests, and estimating the extent to which they can provide equivalent carbon (C) sequestration and stabilization to the old growth forest they replace, is critical for the global C balance. In this study, we combined estimates of biomass C stocks with a detailed assessment of soil C pools in bare land, Eucalyptus plantation, secondary forest and natural old-growth forest after over 50 years of forest restoration in a degraded tropical region of South China. We used isotope studies, density fractionation and physical fractionation to determine the age and stability of soil C pools at different soil depths. After 52 years, the secondary forests had equivalent biomass C stocks to natural forest, whereas soil C stocks were still much higher in natural forest (97.42 t/ha) than in secondary forest (58.75 t/ha) or Eucalyptus plantation (38.99 t/ha) and lowest in bare land (19.9 t/ha). Analysis of δ13C values revealed that most of the C in the soil surface horizons in the secondary forest was new C, with a limited increase of more recalcitrant old C, and limited accumulation of C in deeper soil horizons. However, occlusion of C in microaggregates in the surface soil layer was similar across forested sites, which suggests that there is great potential for additional soil C sequestration and stabilization in the secondary forest and Eucalyptus plantation. Collectively, our results demonstrate that reforestation on degraded tropical land can restore biomass C and surface soil C stocks within a few decades, but much longer recovery times are needed to restore recalcitrant C pools and C stocks at depth. Repeated harvesting and disturbance in rotation plantations had a substantial negative impact on the recovery of soil C stocks. We suggest that current calculations of soil C in secondary tropical forests (e.g. IPCC Guidelines for National Greenhouse Gas Inventories) could overestimate soil C sequestration and stabilization levels in secondary forests and plantations

    Universal quasiparticle decoherence in hole- and electron-doped high-Tc cuprates

    Full text link
    We use angle-resolved photoemission to unravel the quasiparticle decoherence process in the high-TcT_c cuprates. The coherent band is highly renormalized, and the incoherent part manifests itself as a nearly vertical ``dive'' in the EE-kk intensity plot that approaches the bare band bottom. We find that the coherence-incoherence crossover energies in the hole- and electron-doped cuprates are quite different, but scale to their corresponding bare bandwidth. This rules out antiferromagnetic fluctuations as the main source for decoherence. We also observe the coherent band bottom at the zone center, whose intensity is strongly suppressed by the decoherence process. Consequently, the coherent band dispersion for both hole- and electron-doped cuprates is obtained, and is qualitatively consistent with the framework of Gutzwiller projection.Comment: 4 pages, 4 figure

    High-energy kink in high-temperature superconductors

    Get PDF
    In conventional metals, electron-phonon coupling, or the phonon-mediated interaction between electrons, has long been known to be the pairing interaction responsible for the superconductivity. The strength of this interaction essentially determines the superconducting transition temperature TC. One manifestation of electron-phonon coupling is a mass renormalization of the electronic dispersion at the energy scale associated with the phonons. This renormalization is directly observable in photoemission experiments. In contrast, there remains little consensus on the pairing mechanism in cuprate high temperature superconductors. The recent observation of similar renormalization effects in cuprates has raised the hope that the mechanism of high temperature superconductivity may finally be resolved. The focus has been on the low energy renormalization and associated "kink" in the dispersion at around 50 meV. However at that energy scale, there are multiple candidates including phonon branches, structure in the spin-fluctuation spectrum, and the superconducting gap itself, making the unique identification of the excitation responsible for the kink difficult. Here we show that the low-energy renormalization at ~50 meV is only a small component of the total renormalization, the majority of which occurs at an order of magnitude higher energy (~350 meV). This high energy kink poses a new challenge for the physics of the cuprates. Its role in superconductivity and relation to the low-energy kink remains to be determined.Comment: 13 pages, 4 figure

    Characterizing entanglement by momentum-jump in the frustrated Heisenberg ring at quantum phase transition

    Full text link
    We study the pairwise concurrences, a measure of entanglement, of the ground states for the frustrated Heisenberg ring to explore the relation between entanglement and quantum phase transition associated with the momentum jump. The groundstate concurrences between any two sites are obtained analytically and numerically. It shows that the summation of all possible pairwise concurrences is an appropriate candidate to depict the phase transition. We also investigate the role that the momentum takes in the jump of concurrence at the critical points. We find that an abrupt momentum change rusults in the maximal concurrence difference of two degenerate ground states.Comment: 7 pages, 5 figure
    • …
    corecore