In conventional metals, electron-phonon coupling, or the phonon-mediated
interaction between electrons, has long been known to be the pairing
interaction responsible for the superconductivity. The strength of this
interaction essentially determines the superconducting transition temperature
TC. One manifestation of electron-phonon coupling is a mass renormalization of
the electronic dispersion at the energy scale associated with the phonons. This
renormalization is directly observable in photoemission experiments. In
contrast, there remains little consensus on the pairing mechanism in cuprate
high temperature superconductors. The recent observation of similar
renormalization effects in cuprates has raised the hope that the mechanism of
high temperature superconductivity may finally be resolved. The focus has been
on the low energy renormalization and associated "kink" in the dispersion at
around 50 meV. However at that energy scale, there are multiple candidates
including phonon branches, structure in the spin-fluctuation spectrum, and the
superconducting gap itself, making the unique identification of the excitation
responsible for the kink difficult. Here we show that the low-energy
renormalization at ~50 meV is only a small component of the total
renormalization, the majority of which occurs at an order of magnitude higher
energy (~350 meV). This high energy kink poses a new challenge for the physics
of the cuprates. Its role in superconductivity and relation to the low-energy
kink remains to be determined.Comment: 13 pages, 4 figure