3,742 research outputs found

    A Meta-analytical Comparison of Naive Bayes and Random Forest for Software Defect Prediction

    Full text link
    Is there a statistical difference between Naive Bayes and Random Forest in terms of recall, f-measure, and precision for predicting software defects? By utilizing systematic literature review and meta-analysis, we are answering this question. We conducted a systematic literature review by establishing criteria to search and choose papers, resulting in five studies. After that, using the meta-data and forest-plots of five chosen papers, we conducted a meta-analysis to compare the two models. The results have shown that there is no significant statistical evidence that Naive Bayes perform differently from Random Forest in terms of recall, f-measure, and precision.Comment: 11 pages, 8 figures, Conference Pape

    Craniofacial characteristics related to daytime sleepiness screened by the paediatric daytime sleepiness scale

    Get PDF
    Abstract The present cross-sectional study aimed to assess daytime sleepiness in Chinese adolescents using the Paediatric Daytime Sleepiness Scale (PDSS) and to identify associations between PDSS answers and craniofacial characteristics. A group of 265 Chinese adolescents aged 11-17 years self-completed the PDSS, and their extra- and intra-oral craniofacial characteristics were recorded. Among the participants, 59.7% (157) experienced one or more daytime sleepiness events. No significant associations were found between total PDSS scores and the craniofacial parameters, but when PDSS answers were assessed at the item level, several craniofacial characteristics were found to be positively associated with daytime sleepiness, such as hypertrophic tonsils (P = 0.05), a relatively large tongue (P < 0.01), a bilateral Class II molar relationship (P < 0.05) and increased overjet (P < 0.05). A short lower face (P < 0.01) and a convex profile (P < 0.01) were found to be negatively associated with daytime sleepiness. Daytime sleepiness is commonly reported among Chinese adolescents seeking orthodontic treatment and there are potential associations between the condition and craniofacial characteristics. An assessment of daytime sleepiness is recommended to orthodontists in young patients presenting with hypertrophic tonsils, relative large tongues and Class II tendency malocclusions, and appropriate medical referrals should also be considered.published_or_final_versio

    Mass Transfer, Transiting Stream and Magnetopause in Close-in Exoplanetary Systems with Applications to WASP-12

    Full text link
    We study mass transfer by Roche lobe overflow in close-in exoplanetary systems. The planet's atmospheric gas passes through the inner Lagrangian point and flows along a narrow stream, accelerating to 100-200\kms velocity before forming an accretion disk. We show that the cylinder-shaped accretion stream can have an area (projected in the plane of the sky) comparable to that of the planet and a significant optical depth to spectral line absorption. Such a "transiting cylinder" may produce an earlier ingress of the planet transit, as suggested by recent HST observations of the WASP-12 system. The asymmetric disk produced by the accretion stream may also lead to time-dependent obscuration of the star light and apparent earlier ingress. We also consider the interaction of the stellar wind with the planetary magnetosphere. Since the wind speed is subsonic/sub-Alfvenic and comparable to the orbital velocity of the planet, the head of the magnetopause lies eastward relative to the substellar line (the line joining the planet and the star). The gas around the magnetopause may, if sufficiently compressed, give rise to asymmetric ingress/egress during the planet transit, although more works are needed to evaluate this possibility.Comment: 6 pages with 2 figures. Accepted in ApJ. Small changes (add discussion on asymmetric disks

    Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots

    Get PDF
    Mandow, A; Cantador, T.J.; Reina, A.J.; Martínez, J.L.; Morales, J.; García-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the author’s accepted manuscript. The final publication is available at Springer via http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end, spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides, rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de Málaga-Andalucía Tech

    Double di ffential fragmentation cross sections measurements of 95 MeV/u 12C on thin targets for hadrontherapy

    Get PDF
    During therapeutic treatment with heavy ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, an accurate prediction on the fluences of these secondary fragments is necessary. Nowadays, a very limited set of double di ffential carbon fragmentation cross sections are being measured in the energy range used in hadrontherapy (40 to 400 MeV/u). Therefore, new measurements are performed to determine the double di ffential cross section of carbon on di erent thin targets. This work describes the experimental results of an experiment performed on May 2011 at GANIL. The double di ffential cross sections and the angular distributions of secondary fragments produced in the 12C fragmentation at 95 MeV/u on thin targets (C, CH2, Al, Al2O3, Ti and PMMA) have been measured. The experimental setup will be precisely described, the systematic error study will be explained and all the experimental data will be presented.Comment: Submitted to PR

    Single-particle-sensitive imaging of freely propagating ultracold atoms

    Full text link
    We present a novel imaging system for ultracold quantum gases in expansion. After release from a confining potential, atoms fall through a sheet of resonant excitation laser light and the emitted fluorescence photons are imaged onto an amplified CCD camera using a high numerical aperture optical system. The imaging system reaches an extraordinary dynamic range, not attainable with conventional absorption imaging. We demonstrate single-atom detection for dilute atomic clouds with high efficiency where at the same time dense Bose-Einstein condensates can be imaged without saturation or distortion. The spatial resolution can reach the sampling limit as given by the 8 \mu m pixel size in object space. Pulsed operation of the detector allows for slice images, a first step toward a 3D tomography of the measured object. The scheme can easily be implemented for any atomic species and all optical components are situated outside the vacuum system. As a first application we perform thermometry on rubidium Bose-Einstein condensates created on an atom chip.Comment: 24 pages, 10 figures. v2: as publishe

    Operational Significance of Discord Consumption: Theory and Experiment

    Full text link
    Coherent interactions that generate negligible entanglement can still exhibit unique quantum behaviour. This observation has motivated a search beyond entanglement for a complete description of all quantum correlations. Quantum discord is a promising candidate. Here, we demonstrate that under certain measurement constraints, discord between bipartite systems can be consumed to encode information that can only be accessed by coherent quantum interactions. The inability to access this information by any other means allows us to use discord to directly quantify this `quantum advantage'. We experimentally encode information within the discordant correlations of two separable Gaussian states. The amount of extra information recovered by coherent interaction is quantified and directly linked with the discord consumed during encoding. No entanglement exists at any point of this experiment. Thus we introduce and demonstrate an operational method to use discord as a physical resource.Comment: 10 pages, 3 figures, updated with Nature Physics Reference, simplified proof in Appendi

    Fractal Profit Landscape of the Stock Market

    Get PDF
    We investigate the structure of the profit landscape obtained from the most basic, fluctuation based, trading strategy applied for the daily stock price data. The strategy is parameterized by only two variables, p and q. Stocks are sold and bought if the log return is bigger than p and less than -q, respectively. Repetition of this simple strategy for a long time gives the profit defined in the underlying two-dimensional parameter space of p and q. It is revealed that the local maxima in the profit landscape are spread in the form of a fractal structure. The fractal structure implies that successful strategies are not localized to any region of the profit landscape and are neither spaced evenly throughout the profit landscape, which makes the optimization notoriously hard and hypersensitive for partial or limited information. The concrete implication of this property is demonstrated by showing that optimization of one stock for future values or other stocks renders worse profit than a strategy that ignores fluctuations, i.e., a long-term buy-and-hold strategy.Comment: 12 pages, 4 figure

    Strategies used as spectroscopy of financial markets reveal new stylized facts

    Get PDF
    We propose a new set of stylized facts quantifying the structure of financial markets. The key idea is to study the combined structure of both investment strategies and prices in order to open a qualitatively new level of understanding of financial and economic markets. We study the detailed order flow on the Shenzhen Stock Exchange of China for the whole year of 2003. This enormous dataset allows us to compare (i) a closed national market (A-shares) with an international market (B-shares), (ii) individuals and institutions and (iii) real investors to random strategies with respect to timing that share otherwise all other characteristics. We find that more trading results in smaller net return due to trading frictions. We unveiled quantitative power laws with non-trivial exponents, that quantify the deterioration of performance with frequency and with holding period of the strategies used by investors. Random strategies are found to perform much better than real ones, both for winners and losers. Surprising large arbitrage opportunities exist, especially when using zero-intelligence strategies. This is a diagnostic of possible inefficiencies of these financial markets.Comment: 13 pages including 5 figures and 1 tabl
    corecore