35 research outputs found

    Red and Green Algal Origin of Diatom Membrane Transporters: Insights into Environmental Adaptation and Cell Evolution

    Get PDF
    Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments

    Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora

    Get PDF
    The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont’s genome, and have identified more than 30 genes that have been transferred to the host cell’s nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont’s envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids

    Draft genome sequence and genetic transformation of the oleaginous alga Nannochloropis gaditana

    Get PDF
    The potential use of algae in biofuels applications is receiving significant attention. However, none of the current algal model species are competitive production strains. Here we present a draft genome sequence and a genetic transformation method for the marine microalga Nannochloropsis gaditana CCMP526. We show that N. gaditana has highly favourable lipid yields, and is a promising production organism. The genome assembly includes nuclear (~29 Mb) and organellar genomes, and contains 9,052 gene models. We define the genes required for glycerolipid biogenesis and detail the differential regulation of genes during nitrogen-limited lipid biosynthesis. Phylogenomic analysis identifies genetic attributes of this organism, including unique stramenopile photosynthesis genes and gene expansions that may explain the distinguishing photoautotrophic phenotypes observed. The availability of a genome sequence and transformation methods will facilitate investigations into N. gaditana lipid biosynthesis and permit genetic engineering strategies to further improve this naturally productive alga

    How protein targeting to primary plastids via the endomembrane system could have evolved? A new hypothesis based on phylogenetic studies

    Full text link

    De novo genome and transcriptome resources of the Adzuki bean borer Ostrinia scapulalis (Lepidoptera: Crambidae)

    No full text
    We present a draft genome assembly with a de novo prediction and automated functional annotation of coding genes, and a reference transcriptome of the Adzuki bean borer, Ostrinia scapulalis, based on RNA sequencing of various tissues and developmental stages. The genome assembly spans 419 Mb, has a GC content of 37.4% and includes 26,120 predicted coding genes. The reference transcriptome holds 33,080 unigenes and contains a high proportion of a set of genes conserved in eukaryotes and arthropods, used as quality assessment of the reconstructed transcripts. The new genomic and transcriptomic data presented here significantly enrich the public sequence databases for the Crambidae and Lepidoptera, and represent useful resources for future researches related to the evolution and the adaptation of phytophagous moths. The genome and transcriptome assemblies have been deposited and made accessible via a NCBI BioProject (id PRJNA390510) and the LepidoDB database (http://bipaa.genouest.org/sp/ostrinia_scapulalis/). Keywords: De novo assembly, Genome, Transcriptome, Gene prediction, Lepidoptera, Crambida

    Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence

    No full text
    Abstract Background Most phytophagous insects have morphological, behavioral and physiological adaptations allowing them to specialize on one or a few plant species. Identifying the mechanisms involved in host plant specialization is crucial to understand the role of divergent selection between different environments in species diversification, and to identify sustainable targets for the management of insect pest species. In the present study, we measured larval phenotypic and transcriptomic responses to host plants in two related phytophagous lepidopteran species: the European corn borer (ECB), a worldwide pest of maize, and the adzuki bean borer (ABB), which feeds of various dicotyledons. Our aim was to identify the genes and functions underlying host specialization and/or divergence between ECB and ABB. Results At the phenotypic level, we observed contrasted patterns of survival, weight gain and developmental time between ECB and ABB, and within ECB and ABB reared on two different host plants. At the transcriptomic level, around 8% of the genes were differentially expressed (DE) between species and/or host plant. 70% of these DE genes displayed a divergent pattern of expression between ECB and ABB, regardless of the host, while the remaining 30% were involved in the plastic response between hosts. We further categorized plastic DE genes according to their parallel or opposite pattern between ECB and ABB to specifically identify candidate genes involved in the species divergence by host specialization. These candidates highlighted a comprehensive response, involving functions related to plant recognition, digestion, detoxification, immunity and development. Last, we detected viral, bacterial, and yeast genes whose incidence contrasted ECB and ABB samples, and maize and mugwort conditions. We suggest that these microorganism communities might influence the survival, metabolism and defense patterns observed in ECB and ABB larvae. Conclusions The comprehensive approach developed in the present study allowed to identify phenotypic specialization patterns and underlying candidate molecular mechanisms, and highlighted the putative role of microorganisms in the insect-host plant interaction. These findings offer the opportunity to pinpoint specific and sustainable molecular or physiological targets for the regulation of ECB pest populations

    Additional file 4: of Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence

    No full text
    Table S6. Detailed information for DE genes displaying significant homology to genes described in viruses, yeasts and fungi: mean normalized counts per experimental set-up, model effects (host plant, moth species, interaction) and functional annotations. (XLSX 45 kb

    Additional file 1: of Larval transcriptomic response to host plants in two related phytophagous lepidopteran species: implications for host specialization and species divergence

    No full text
    Table S1. Male / female proportions in sequenced RNA pools; Table S2. Read mapping percentages on ECB-ref and ABB-ref; Table S5. Enriched GO terms in evolutionary A-D categories (Figs. 1 & 5), after Fisher’s exact test in Blast2GO and for a FDR < 0.05; Figure S1. Number of expressed transcripts per experimental set-up (moth species x host plant). A. Venn diagram for ECB-ref transcripts B. Venn Diagram for ABB-ref transcripts; Figure S2. Heatmaps of DE genes in ECB-ref by evolutionary category: (S2-A) differential expression (DE) between plants and not between moth species, (S2-B) DE between moth species and not between plants, (S2-C) DE between moth species and between plants, parallel trend, (S2-D) DE between moth species and between plants, opposite trend. (PDF 285 kb
    corecore