43 research outputs found

    CXCR7 expression is associated with disease-free and disease-specific survival in cervical cancer patients

    Get PDF
    Background:The CXC chemokine receptor (CXCR)7 is involved in tumour development and metastases formation. The aim of the present study was to determine protein expression of CXCR7, its putative co-receptors epidermal growth factor receptor (EGFR) and CXCR4, its predominant ligand CXCL12, their co-dependency and their association with survival in cervical cancer patients.Methods:CXC chemokine receptor 7, EGFR, CXCR4 and CXCL12 expression were determined immunohistochemically in 103 paraffin-embedded, cervical cancers. Subsequently, associations with patient characteristics were assessed and survival analyses were performed.Results:CXC chemokine receptor 7 was expressed by 43% of tumour specimens, in a large majority of cases together with either EGFR or CXCR4 (double positive), or both (triple positive). The CXCR7 expression was associated with tumour size (P=0.013), lymph node metastasis (P=0.001) and EGFR expression (P=0.009). CXC chemokine receptor 7 was independently associated with disease-free survival (hazard ratio (HR)=4.3, 95% confidence intervals (CI) 1.7-11.0, P=0.002), and strongly associated with disease-specific survival (HR=3.9, 95% CI 1.5-10.2, P=0.005).Conclusion:CXC chemokine receptor 7 expression predicts poor disease-free and disease-specific survival in cervical cancer patients, and might be a promising new therapeutic marker. In a large majority of cases, CXCR7 is co-expressed with CXCR4 and/or EGFR, supporting the hypothesis that these receptors assist in CXCR7 signal transduction.Cervix cance

    Expression of the chemokine receptor CXCR7 in CXCR4-expressing human 143B osteosarcoma cells enhances lung metastasis of intratibial xenografts in SCID mice

    Get PDF
    More effective treatment of metastasizing osteosarcoma with a current mean 5-year survival rate of less than 20% requires more detailed knowledge on mechanisms and key regulatory molecules of the complex metastatic process. CXCR4, the receptor of the chemokine CXCL12, has been reported to promote tumor progression and metastasis in osteosarcoma. CXCR7 is a recently deorphanized CXCL12-scavenging receptor with so far not well-defined functions in tumor biology. The present study focused on a potential malignancy enhancing function of CXCR7 in interaction with CXCR4 in osteosarcoma, which was investigated in an intratibial osteosarcoma model in SCID mice, making use of the human 143B osteosarcoma cell line that spontaneously metastasizes to the lung and expresses endogenous CXCR4. 143B osteosarcoma cells stably expressing LacZ (143B-LacZ cells) were retrovirally transduced with a gene encoding HA-tagged CXCR7 (143B-LacZ-X7-HA cells). 143B-LacZ-X7-HA cells co-expressing CXCR7 and CXCR4 exhibited CXCL12 scavenging and enhanced adhesion to IL-1β-activated HUVEC cells compared to 143B-LacZ cells expressing CXCR4 alone. SCID mice intratibially injected with 143B-LacZ-X7-HA cells had significantly (p<0.05) smaller primary tumors, but significantly (p<0.05) higher numbers of lung metastases than mice injected with 143B-LacZ cells. Unexpectedly, 143B-LacZ-X7-HA cells, unlike 143B-LacZ cells, also metastasized with high incidence to the auriculum cordis. In conclusion, expression of the CXCL12 scavenging receptor CXCR7 in the CXCR4-expressing human 143B osteosarcoma cell line enhances its metastatic activity in intratibial primary tumors in SCID mice that predominantly metastasize to the lung and thereby closely mimic the human disease. These findings point to CXCR7 as a target, complementary to previously proposed CXCR4, for more effective metastasis-suppressive treatment in osteosarcoma
    corecore