32 research outputs found

    Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children

    Get PDF
    Background: Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity. Methodology/Principal findings: We assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c) to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001), whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034), or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38). Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49–0.82, P<0.001) antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63–0.73, P = 0.008–0.041) and IgG1 (IRR 0.56–0.69, P = 0.001–0.035) to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure. Conclusion/Significance: These results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in clinical immunity against P. vivax are now required to confirm the potential of the reticulocyte-binding PvRBP2b and PvRBP1a as vaccine candidate antigens

    Asymptomatic Plasmodium vivax infections induce robust IgG responses to multiple blood-stage proteins in a low-transmission region of western Thailand

    Get PDF
    BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both

    Accelerating cryoprotectant diffusion kinetics improves cryopreservation of pancreatic islets

    Get PDF
    Funder: W. D. Armstrong Fund (School of Technology, University of Cambridge)Abstract: Cryopreservation offers the potential to increase the availability of pancreatic islets for treatment of diabetic patients. However, current protocols, which use dimethyl sulfoxide (DMSO), lead to poor cryosurvival of islets. We demonstrate that equilibration of mouse islets with small molecules in aqueous solutions can be accelerated from > 24 to 6 h by increasing incubation temperature to 37 °C. We utilize this finding to demonstrate that current viability staining protocols are inaccurate and to develop a novel cryopreservation method combining DMSO with trehalose pre-incubation to achieve improved cryosurvival. This protocol resulted in improved ATP/ADP ratios and peptide secretion from β-cells, preserved cAMP response, and a gene expression profile consistent with improved cryoprotection. Our findings have potential to increase the availability of islets for transplantation and to inform the design of cryopreservation protocols for other multicellular aggregates, including organoids and bioengineered tissues

    Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites

    Get PDF
    Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Cote d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally

    Analyse structurale des tyrosine-kinases bactériennes (BY-kinases) et leurs substrats

    No full text
    Des tyrosine-kinases bactériennes atypiques (appelées BY-kinases) ont été identifiées comme constituant d'un complexe multiprotéique transmembranaire responsable de la synthèse et l'export des polysaccharides de la capsule bactérienne. Les BY-kinases s'autophosphorylent sur un cluster de tyrosine C-terminal et phosphorylent des protéines endogènes de la bactérie comme des UDP-sucres déshydrogénases impliquées dans la synthèse des précurseurs des exopolysaccharides. Les données structurales et fonctionnelles disponibles posaient la question de la conservation du degré d'oligomérisation et du mécanisme d'autophosphorylation entre BY-kinases de firmicutes et de protéobactéries. J'ai donc résolu la structure cristalline du domaine cytoplasmique de la BY-kinase Wzc de la protéobactérie E. coli. Cette nouvelle structure montre que, comme la BY-kinase CapAB du firmicute S. aureus, Wzc forme un anneau octamérique expliquant le mécanisme d'autophosphorylation intermoléculaire. Des mesures d'affinité par fluorimétrie m'ont également permis de montrer qu'une tyrosine interne Y569, initialement supposée réguler la trans-autophosphorylation du tyrosine-cluster, est directement impliquée dans la fixation du nucléotide. Nous montrons également qu'une boucle flexible riche en résidus basiques joue un rôle essentiel dans la synthèse de la capsule, probablement en interagissant avec d'autres protéines impliquées dans ce processus. De plus, j'ai résolu la structure cristalline de l'UDP-N-acétylmannosamine déshydrogenase CapO, substrat de la BY-kinase CapAB de S. aureus. Cette structure révèle la formation d'un pont disulfure entre la cystéine catalytique C258 et le résidu C92 et la présence de potentiels sites de phosphorylation, Y89 et Y264, à proximité de ces deux cystéines. L'analyse de mutants est en cours afin d'élucider le mécanisme de régulation de cette enzyme. La comparaison avec les structures d'autres membres de cette famille de déshydrogénases permet également de mieux comprendre leur spécificité de substrat.Atypical bacterial tyrosine kinases (BY-kinases) have been identified as part of a multiprotein transmembrane complex responsible of the biosynthesis and export of capsular polysaccharides. BY-kinases autophosphorylate on a C-terminal tyrosine cluster and phosphorylate endogenous bacterial proteins like UDP-sugar dehydrogenases involved in the synthesis of exopolysaccharide precursors. Available structural and functional data raised the question of the conservation of the oligomerization state and of the autophosphorylation mechanism between BY-kinases from proteobacteria and firmicutes. I thus solved the crystal structure of the cytoplasmic domain of the BY-kinase Wzc from E. coli. This new structure shows that, like the BY-kinase CapAB from the firmicute S. aureus, Wzc forms an octameric ring explaining the intermolecular autophosphorylation mechanism. Fluorimetric affinity measurements further allowed me to show that the internal tyrosine Y569, initially supposed to regulate tyrosine-cluster trans-autophosphorylation, is directly involved in nucleotide binding. We also show that a flexible loop rich in basic residues plays an essential role in capsule synthesis, most probably through interaction with other proteins involved in this process. Moreover, I solved the crystal structure of UDP-N-acetylmannosamine dehydrogenase CapO, the substrate of the BY-kinases CapAB from S. aureus. The structure reveals the formation of a disulfide bridge between the catalytic cysteine C258 and residue C92 and the presence of potential phosphorylation sites, Y89 and Y264, close to these two cysteines. Mutational analysis is underway in order to elucidate the regulatory mechanism of this enzyme. Comparison with the structures of other members of this family of dehydrogenases also allows us to shed light on their specific substrate recognition.ORSAY-PARIS 11-BU Sciences (914712101) / SudocPARIS-BIUP (751062107) / SudocSudocFranceF

    Comparative analysis of the Tyr-kinases CapB1 and CapB2 fused to their cognate modulators CapA1 and CapA2 from Staphylococcus aureus.

    Get PDF
    A particular class of tyrosine-kinases sharing no structural similarity with eukaryotic tyrosine-kinases has been evidenced in a large array of bacterial species. These bacterial tyrosine-kinases are able to autophosphorylate on a C-terminal tyrosine-rich motif. Their autophosphorylation has been shown to play a crucial role in the biosynthesis or export of capsular polysaccharide. The analysis of the first crystal structure of the staphylococcal tyrosine kinase CapB2 associated with the activating domain of the transmembrane modulator CapA1 had brought conclusive explanation for both the autophosphorylation and activation processes. In order to explain why CapA1 activates CapB2 more efficiently than its cognate transmembrane modulator CapA2, we solved the crystal structure of CapA2B2 and compared it with the previously published structure of CapA1B2. This structural analysis did not provide the expected clues about the activation discrepancy observed between the two modulators. Staphylococcus aureus also encodes for a CapB2 homologue named CapB1 displaying more than 70% sequence similarity and being surprisingly nearly unable to autophosphorylate. We solved the crystal structure of CapA1B1 and carefully compare it with the structure of CapA1B2. The active sites of both proteins are highly conserved and the biochemical characterization of mutant proteins engineered to test the importance of small structural discrepancies identified between the two structures did not explain the inactivity of CapB1. We thus tested if CapB1 could phosphorylate other protein substrates or hydrolyze ATP. However, no activity could be detected in our in vitro assays. Taken together, these data question about the biological role of the homologous protein pairs CapA1/CapB1 and CapA2/CapB2 and we discuss about several possible interpretations

    Plasmodium vivax Reticulocyte Binding Proteins Are Key Targets of Naturally Acquired Immunity in Young Papua New Guinean Children

    No full text
    Background: Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity. Methodology/Principal findings: We assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c) to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001), whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034), or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38). Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49–0.82, P<0.001) antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63–0.73, P = 0.008–0.041) and IgG1 (IRR 0.56–0.69, P = 0.001–0.035) to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure. Conclusion/Significance: These results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in clinical immunity against P. vivax are now required to confirm the potential of the reticulocyte-binding PvRBP2b and PvRBP1a as vaccine candidate antigens

    PNTD-D-18-01393-Dataset

    No full text
    Dataset for the article named 'Antibodies to Plasmodium vivax Reticulocyte Binding Protein 2b are Associated with Protection against P. vivax Malaria in Populations Living in Low Malaria Transmission Regions of Brazil and Thailand' in Plos NTD

    Cryo-EM structure of the agonist-bound Hsp90-XAP2-AHR cytosolic complex

    No full text
    International audienceThe aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Ã… structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design
    corecore