364 research outputs found

    Similitude in hydrodynamic tests involving planing

    Get PDF
    The problems of using models in planing tests are addressed. If one passes from the model to a hull of linear dimensions n times greater, the speeds are connected by the law of mechanical similitude. The normal forces given by the hydrodynamic equations (perfect fluid) also follow the law of dynamic similitude (Reech's method) and are multiplied by n(exp 3). A series of tests were performed and the actual results were compared to theoretical results

    A SiGe HEMT Mixer IC with Low Conversion Loss

    Get PDF
    The authors present the first SiGe HEMT mixer integrated circuit. The active mixer stage, operating up to 10GHz RF, has been designed and realized using a 0.1µ µµ µm gate length transistor technology. The design is based on a new large-signal simulation model developed for the SiGe HEMT. Good agreement between simulation and measurement is reached. The mixer exhibits 4.0dB and 4.7dB conversion loss when down-converting 3.0GHz and 6.0GHz signals, respectively, to an intermediate frequency of 500MHz using high-side injection of 5dBm local oscillator power. Conversion loss is less than 8dB for RF frequencies up to 10GHz with a mixer linearity of –8.8dBm input related 1dB compression point

    Tuning of Cascaded Controllers for Robust Grid-Forming Voltage Source Converter

    Get PDF
    International audienceFrom the origin of the grid, energy has been delivered to electrical loads mainly by synchronous machines. All the main rules to manage the grid have been based on the electromechanical behavior of these machines which have been extensively studied for many years. Due to the increase of HVDC link and renewable energy sources as wind turbine and PV, power converters are massively introduced in the grid with a fundamentally different dynamic behavior. Some years ago, they were connected as simple power injector. Then, they were asked to provide some ancillary services to the grid, in the future, grid forming capability will be required. Even if gridforming converters had been extensively studied for microgrids and offshore grids, it has to be adapted to transmission grid where the topology may be largely modified. This paper presents an algorithm for calculating the controller parameters of a gridforming converter which guarantee a stable behavior for many different configurations of the grid

    Free thyroxine measurement in clinical practice: how to optimize indications, analytical procedures, and interpretation criteria while waiting for global standardization

    Get PDF
    Thyroid dysfunctions are among the most common endocrine disorders and accurate biochemical testing is needed to confirm or rule out a diagnosis. Notably, true hyperthyroidism and hypothyroidism in the setting of a normal thyroid-stimulating hormone level are highly unlikely, making the assessment of free thyroxine (FT4) inappropriate in most new cases. However, FT4 measurement is integral in both the diagnosis and management of relevant central dysfunctions (central hypothyroidism and central hyperthyroidism) as well as for monitoring therapy in hyperthyroid patients treated with anti-thyroid drugs or radioiodine. In such settings, accurate FT4 quantification is required. Global standardization will improve the comparability of the results across laboratories and allow the development of common clinical decision limits in evidence-based guidelines. The International Federation of Clinical Chemistry and Laboratory Medicine Committee for Standardization of Thyroid Function Tests has undertaken FT4 immunoassay method comparison and recalibration studies and developed a reference measurement procedure that is currently being validated. However, technical and implementation challenges, including the establishment of different clinical decision limits for distinct patient groups, still remain. Accordingly, different assays and reference values cannot be interchanged. Two-way communication between the laboratory and clinical specialists is pivotal to properly select a reliable FT4 assay, establish reference intervals, investigate discordant results, and monitor the analytical and clinical performance of the method over time

    Calibration of the Politrack® system based on CR39 solid-state nuclear track detectors for passive indoor radon concentration measurements

    Get PDF
    Swiss national requirements for measuring radon gas exposures demand a lower detection limit of 50 kBq h m−3, representing the Swiss concentration average of 70 Bq m−3 over a 1-month period. A solid-state nuclear track detector (SSNTD) system (Politrack, Mi.am s.r.l., Italy) has been acquired to fulfil these requirements. This work was aimed at the calibration of the Politrack system with traceability to international standards and the development of a procedure to check the stability of the system. A total of 275 SSNTDs was exposed to 11 different radon exposures in the radon chamber of the Secondary Calibration Laboratory at the Paul Scherrer Institute, Switzerland. The exposures ranged from 50 to 15000 kBq h m−3. For each exposure of 20 detectors, 5 SSNTDs were used to monitor possible background exposures during transport and storage. The response curve and the calibration factor of the whole system were determined using a Monte Carlo fitting procedure. A device to produce CR39 samples with a reference number of tracks using a 241Am source was developed for checking the long-term stability of the Politrack system. The characteristic limits for the detection of a possible system drift were determined following ISO Standard 1192

    Attosecond dynamics through a Fano resonance: Monitoring the birth of a photoelectron

    Full text link
    This is the author’s version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science on 354, 11 november 2016, DOI: 10.1126/science.aah5188The dynamics of quantum systems are encoded in the amplitude and phase of wave packets. However, the rapidity of electron dynamics on the attosecond scale has precluded the complete characterization of electron wave packets in the time domain. Using spectrally resolved electron interferometry, we were able to measure the amplitude and phase of a photoelectron wave packet created through a Fano autoionizing resonance in helium. In our setup, replicas obtained by two-photon transitions interfere with reference wave packets that are formed through smooth continua, allowing the full temporal reconstruction, purely from experimental data, of the resonant wave packet released in the continuum. In turn, this resolves the buildup of the autoionizing resonance on an attosecond time scale. Our results, in excellent agreement with ab initio time-dependent calculations, raise prospects for detailed investigations of ultrafast photoemission dynamics governed by electron correlation, as well as coherent control over structured electron wave packetsWe thank S. Weber for crucial contributions to the PLFA attosecond beamline, D. Cubaynes, M. Meyer, F. Penent, J. Palaudoux, for setup and test of the electron spectrometer, and O. Smirnova, for fruitful discussions. Supported by ITN-MEDEA 641789, ANR-15-CE30-0001-01-CIMBAAD, ANR11-EQPX0005-ATTOLAB, the European Research Council Advanced Grant XCHEM no. 290853, the European COST Action XLIC CM1204, and the MINECO Project no. FIS2013-42002-R. We acknowledge allocation of computer time from CCC-UAM and Mare Nostrum BS

    GPS low noise amplifier with high immunity to wireless jamming signals and power control option

    Get PDF
    A SiGe GPS low noise amplifier with power control option and high immunity to wireless jamming signals is presented. These novel features applied to Atmel’s ATR0610 GPS LNA allow significant power saving at the radio interface while meeting the out-of-band linearity requirements. The results show the noise figure less than 2.1 dB, including the embedded pre-select filter, and out-of-band IIP3 above +8 dBm in the frequency range between 1.8GHz and 2 GHz with 3mA current consumption. The GPS system performance shows GPS sensitivity below -141 dBm with 5 ms integration interval

    Weighing In: Academic Writers on Neurodiversity

    Get PDF
    Neurodiversity as a concept, identity, and movement has radically challenged pre-existing ideas of human difference and value. First proposed by Judy Singer (1998) and largely developed through the work of community activists, neurodiversity posits an alternative to pathologizing and medicalized understandings of human differences. This article explores the ways neurodiversity is being used, defined, and deployed based on a corpus of 94 academic texts published across social science disciplines (2006–2021). Using discourse analysis methods derived primarily from Fairclough (2001 , 2003 ), we examine how neurodiversity has been claimed and refashioned within academia. Neurodiversity was often seen as an embodied difference, and was variously portrayed as dichotomous, universal, or existing on a spectrum. Many authors followed an “Autism Plus” strategy, keeping autism at the center of discussions. Academic writers of the texts on neurodiversity overwhelmingly launched their own claims to authority, even as they simultaneously positioned themselves as out of the fray
    corecore