6 research outputs found

    Linked-read sequencing enables haplotype-resolved resequencing at population scale

    Get PDF
    The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences - including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps - are still limited by the lack of high-quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50 and 90 percent of phased sequences located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1Mb (N50/N90) at 25x coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing at population scale

    Automation of Spatial Transcriptomics library preparation to enable rapid and robust insights into spatial organization of tissues

    No full text
    Background: Interest in studying the spatial distribution of gene expression in tissues is rapidly increasing. Spatial Transcriptomics is a novel sequencing-based technology that generates high-throughput information on the distribution, heterogeneity and co-expression of cells in tissues. Unfortunately, manual preparation of high-quality sequencing libraries is time-consuming and subject to technical variability due to human error during manual pipetting, which results in sample swapping and the accidental introduction of batch effects. All these factors complicate the production and interpretation of biological datasets. Results: We have integrated an Agilent Bravo Automated Liquid Handling Platform into the Spatial Transcriptomics workflow. Compared to the previously reported Magnatrix 8000+ automated protocol, this approach increases the number of samples processed per run, reduces sample preparation time by 35%, and minimizes batch effects between samples. The new approach is also shown to be highly accurate and almost completely free from technical variability between prepared samples. Conclusions: The new automated Spatial Transcriptomics protocol using the Agilent Bravo Automated Liquid Handling Platform rapidly generates high-quality Spatial Transcriptomics libraries. Given the wide use of the Agilent Bravo Automated Liquid Handling Platform in research laboratories and facilities, this will allow many researchers to quickly create robust Spatial Transcriptomics libraries.QC 20200512</p

    Linked-read sequencing enables haplotype-resolved resequencing at population scale

    No full text
    The feasibility to sequence entire genomes of virtually any organism provides unprecedented insights into the evolutionary history of populations and species. Nevertheless, many population genomic inferences – including the quantification and dating of admixture, introgression and demographic events, and inference of selective sweeps – are still limited by the lack of high-quality haplotype information. The newest generation of sequencing technology now promises significant progress. To establish the feasibility of haplotype-resolved genome resequencing at population scale, we investigated properties of linked-read sequencing data of songbirds of the genus Oenanthe across a range of sequencing depths. Our results based on the comparison of downsampled (25x, 20x, 15x, 10x, 7x, and 5x) with high-coverage data (46-68x) of seven bird genomes mapped to a reference suggest that phasing contiguities and accuracies adequate for most population genomic analyses can be reached already with moderate sequencing effort. At 15x coverage, phased haplotypes span about 90% of the genome assembly, with 50 and 90 percent of phased sequences located in phase blocks longer than 1.25-4.6 Mb (N50) and 0.27-0.72 Mb (N90). Phasing accuracy reaches beyond 99% starting from 15x coverage. Higher coverages yielded higher contiguities (up to about 7 Mb/1Mb (N50/N90) at 25x coverage), but only marginally improved phasing accuracy. Phase block contiguity improved with input DNA molecule length; thus, higher-quality DNA may help keeping sequencing costs at bay. In conclusion, even for organisms with gigabase-sized genomes like birds, linked-read sequencing at moderate depth opens an affordable avenue towards haplotype-resolved genome resequencing at population scale.Funding provided by: German Research Foundation*Crossref Funder Registry ID: Award Number: BU3456/3-1Funding provided by: Science for Life Laboratory Swedish Biodiversity Program*Crossref Funder Registry ID: Award Number: 2015-R14Funding provided by: German Research FoundationCrossref Funder Registry ID: http://dx.doi.org/10.13039/501100001659Award Number: BU3456/3-1Funding provided by: Science for Life Laboratory Swedish Biodiversity ProgramCrossref Funder Registry ID: Award Number: 2015-R1410X Genomics linked-reads (60x coverage) were assembled using the Supernova 2.1 assembler. To remove duplicate scaffolds of at least 99% identity from the pseudohaploid assembly, we ran the dedupe procedure in BBTools (https://sourceforge.net/projects/bbmap/) allowing up to 7,000 edits. This reduced the assembly to 11,030 scaffolds. We then aimed to ensure that all duplicate scaffolds were removed and retain only scaffolds whose integrity can be confirmed by the presence of syntenic regions in another songbird genome. To this end, we performed a lastz alignment against the collared flycatcher assembly version 1.5, which is the highest-quality assembly available from the Muscicapidae family. For this we used lastz 1.04 with settings M=254, K=4500, L=3000, Y=15000, C=2, T=2, and --matchcount=10000. This resulted in 295 scaffolds with unique hits in the flycatcher assembly

    Genome-wide evidence supports mitochondrial relationships and pervasive parallel phenotypic evolution in open-habitat chats

    No full text
    In wheatears and related species (‘open-habitat chats’), molecular phylogenetics has led to a comprehensively revised understanding of species relationships and species diversity. Phylogenetic analyses have suggested that, in many cases, phenotypic similarities do not reflect species’ relationships, revealing traditionally defined genera as non-monophyletic. This led to the suggestion of pervasive parallel evolution of open-habitat chats’ plumage coloration and ecological phenotypes. However, to date, the molecular evidence for the phylogenetic relationships among open-habitat chats is mainly limited to mitochondrial DNA. Here, we assessed whether the mitochondrial relationships are supported by genome-wide data. To this end, we reconstructed the species tree among 14 open-habitat chat taxa using multi-species coalescent analyses based on ~1’300 SNPs. Our results confirm previous ones based chiefly on mitochondrial DNA; notably the paraphyly of the Oenanthe lugens complex and the clustering of individual species formerly placed in the genera Cercomela and Myrmecocichla within Oenanthe. Since several variable morphological and ecological characteristics occur in multiple places across the open-habitat chat phylogeny, our study consolidates the evidence for pervasive parallel evolution in the plumage coloration and ecology of open-habitat chats

    Transcriptomics and methylomics of CD4-positive T cells in arsenic-exposed women

    Get PDF
    Arsenic, a carcinogen with immunotoxic effects, is a common contaminant of drinking water and certain food worldwide. We hypothesized that chronic arsenic exposure alters gene expression, potentially by altering DNA methylation of genes encoding central components of the immune system. We therefore analyzed the transcriptomes (by RNA sequencing) and methylomes (by target-enrichment next-generation sequencing) of primary CD4-positive T cells from matched groups of four women each in the Argentinean Andes, with fivefold differences in urinary arsenic concentrations (median concentrations of urinary arsenic in the lower- and high-arsenic groups: 65 and 276 μg/l, respectively). Arsenic exposure was associated with genome-wide alterations of gene expression; principal component analysis indicated that the exposure explained 53% of the variance in gene expression among the top variable genes and 19% of 28,351 genes were differentially expressed (false discovery rate 80% methylation) than the lower-arsenic group. Differentially methylated regions that were hyper-methylated in the high-arsenic group showed enrichment for immune-related gene ontologies that constitute the basic functions of CD4-positive T cells, such as isotype switching and lymphocyte activation and differentiation. In conclusion, chronic arsenic exposure from drinking water was related to changes in the transcriptome and methylome of CD4-positive T cells, both genome wide and in specific genes, supporting the hypothesis that arsenic causes immunotoxicity by interfering with gene expression and regulation
    corecore