1,599 research outputs found
Evidence for an ηc(1S)π−resonance in B0→ηc(1S)K+π−decays
A Dalitz plot analysis of B0→ηc(1S)K+π− decays is performed using data samples of pp collisions collected with the LHCb detector at centre-of-mass energies of s√=7, 8 and 13TeV, corresponding to a total integrated luminosity of 4.7 fb −1. A satisfactory description of the data is obtained when including a contribution representing an exotic ηc(1S)π− resonant state. The significance of this exotic resonance is more than three standard deviations, while its mass and width are 4096±20 +18−22MeV and 152±58 +60−35MeV, respectively. The spin-parity assignments JP=0+ and JP=1− are both consistent with the data. In addition, the first measurement of the B0→ηc(1S)K+π− branching fraction is performed and gives B(B0→ηc(1S)K+π−)=(5.73±0.24±0.13±0.66)×10−4, where the first uncertainty is statistical, the second systematic, and the third is due to limited knowledge of external branching fractions
Measurement of the J/ψ pair production cross-section in pp collisions at √s = 13 TeV
The production cross-section of J/ψ pairs is measured using a data sample of pp collisions collected by the LHCb experiment at a centre-of-mass energy of s=13 TeV, corresponding to an integrated luminosity of 279 ±11 pb −1 . The measurement is performed for J/ψ mesons with a transverse momentum of less than 10 GeV/c in the rapidity range 2.0 < y < 4.5. The production cross-section is measured to be 15.2 ± 1.0 ± 0.9 nb. The first uncertainty is statistical, and the second is systematic. The differential cross-sections as functions of several kinematic variables of the J/ψ pair are measured and compared to theoretical predictions
Observation of the B+→D∗-K+π+ decay
The B+→D∗-K+π+ decay potentially provides an excellent way to investigate charm meson spectroscopy. The decay is searched for in a sample of proton-proton collision data collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, corresponding to an integrated luminosity of 3 fb-1. A clear signal is observed, and the ratio of its branching fraction to that of the B+→D∗-π+π+ normalization channel is measured to be B(B+→D∗-K+π+)/B(B+→D∗-π+π+)=(6.39±0.27±0.48)×10-2, where the first uncertainty is statistical and the second is systematic. This is the first observation of the B+→D∗-K+π+ decay
Study of prompt D 0 meson production in pPb collisions at √sNN=5 TeV
Production of prompt D 0 mesons is studied in proton-lead and lead-proton collisions recorded at the LHCb detector at the LHC. The data sample corresponds to an integrated luminosity of 1.58±0.02 nb −1 recorded at a nucleon-nucleon centre-of-mass energy of sNN=5 TeV. Measurements of the differential cross-section, the forward-backward production ratio and the nuclear modification factor are reported using D 0 candidates with transverse momenta less than 10 GeV/c and rapidities in the ranges 1.5 < y ∗ < 4.0 and −5.0 < y ∗ < −2.5 in the nucleon-nucleon centre-of-mass system
Measurement of the Λ c + to D 0 production ratio in peripheral PbPb collisions at s NN = 5. 02 TeV
We report on a measurement of the Λc+ to D0 production ratio in peripheral PbPb collisions at sNN = 5.02 TeV with the LHCb detector in the forward rapidity region 2 < y < 4.5. The Λc+ (D0) hadrons are reconstructed via the decay channel Λc+→ pK−π+ (D0→ K−π+) for 2 < pT< 8 GeV/c and in the centrality range of about 65–90%. The results show no significant dependence on pT, y or the mean number of participating nucleons. They are also consistent with similar measurements obtained by the LHCb collaboration in pPb and Pbp collisions at sNN = 5.02 TeV. The data agree well with predictions from PYTHIA in pp collisions at s = 5 TeV but are in tension with predictions of the Statistical Hadronization model
The LHCb Upgrade I
The LHCb upgrade represents a major change of the experiment. The detectors have been almost completely renewed to allow running at an instantaneous luminosity five times larger than that of the previous running periods. Readout of all detectors into an all-software trigger is central to the new design, facilitating the reconstruction of events at the maximum LHC interaction rate, and their selection in real time. The experiment's tracking system has been completely upgraded with a new pixel vertex detector, a silicon tracker upstream of the dipole magnet and three scintillating fibre tracking stations downstream of the magnet. The whole photon detection system of the RICH detectors has been renewed and the readout electronics of the calorimeter and muon systems have been fully overhauled. The first stage of the all-software trigger is implemented on a GPU farm. The output of the trigger provides a combination of totally reconstructed physics objects, such as tracks and vertices, ready for final analysis, and of entire events which need further offline reprocessing. This scheme required a complete revision of the computing model and rewriting of the experiment's software
A search for rare B → Dμ + μ − decays
A search for rare B → Dμ+μ− decays is performed using proton-proton collision data collected by the LHCb experiment, corresponding to an integrated luminosity of 9 fb−1. No significant signals are observed in the non-resonant μ+μ− modes, and upper limits of BB0→D¯0μ+μ−<5.1×10−8, BB+→Ds+μ+μ−<3.2×10−8, BBs0→D¯0μ+μ−<1.6×10−7 and fc/fu·BBc+→Ds+μ+μ−<9.6×10−8 are set at the 95 % confidence level, where fc and fu are the fragmentation fractions of a B meson with a c and u quark respectively in proton-proton collisions. Each result is either the first such measurement or an improvement by three orders of magnitude on an existing limit. Separate upper limits are calculated when the muon pair originates from a J/ψ → μ+μ− decay. The branching fraction of Bc+→Ds+J/ψ multiplied by the fragmentation-fraction ratio is measured to befcfu·BBc+→Ds+J/ψ=1.63±0.15±0.13×10−5, where the first uncertainty is statistical and the second systematic
Study of decays to the final state and evidence for the decay
A study of decays is performed for the first time
using data corresponding to an integrated luminosity of 3.0
collected by the LHCb experiment in collisions at centre-of-mass energies
of and TeV. Evidence for the decay
is reported with a significance of 4.0 standard deviations, resulting in the
measurement of
to
be .
Here denotes a branching fraction while and
are the production cross-sections for and mesons.
An indication of weak annihilation is found for the region
, with a significance of
2.4 standard deviations.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-022.html,
link to supplemental material inserted in the reference
Measurement of the lifetime
Using a data set corresponding to an integrated luminosity of ,
collected by the LHCb experiment in collisions at centre-of-mass energies
of 7 and 8 TeV, the effective lifetime in the
decay mode, , is measured to be ps. Assuming
conservation, corresponds to the lifetime of the light
mass eigenstate. This is the first measurement of the effective
lifetime in this decay mode.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://lhcbproject.web.cern.ch/lhcbproject/Publications/LHCbProjectPublic/LHCb-PAPER-2016-017.htm
Model-independent evidence for contributions to decays
The data sample of decays acquired with the
LHCb detector from 7 and 8~TeV collisions, corresponding to an integrated
luminosity of 3 fb, is inspected for the presence of or
contributions with minimal assumptions about
contributions. It is demonstrated at more than 9 standard deviations that
decays cannot be described with
contributions alone, and that contributions play a dominant role in
this incompatibility. These model-independent results support the previously
obtained model-dependent evidence for charmonium-pentaquark
states in the same data sample.Comment: 21 pages, 12 figures (including the supplemental section added at the
end
- …