73 research outputs found

    Nursery delineation, habitat utilization, movements, and migration of juvenile Carcharhinus plumbeus in Chesapeake Bay, Virginia, United States of America

    Get PDF
    Chesapeake Bay is possibly the largest summer nursery for Carcharhinus plumbeus in the western Atlantic. Longline sampling conducted from 1990--1999 was used to delineate this nursery spatially and temporally. Catch data from 83 longline stations sampled throughout the Virginia Chesapeake Bay were analyzed as a function of nine physical and environmental variables to delineate this nursery spatially. Tree-based models determined which variables best discriminated between stations with high and low catches and indicated that complex distribution patterns could be adequately modeled with few variables. The highest abundance of juvenile sharks was predicted where salinity was greater than 20.5 and depth was greater than 5.5 meters. Longline data from 100 sets made at two standard stations in the lower Bay indicated that immigration occurred in late May and early June and was highly correlated with increasing water temperature. Emigration from the estuary occurred in late September and early October and was highly correlated with decreasing day length. Between 1995 and 2000, 1846 juvenile C. plumbeus were tagged. With two exceptions, recaptures made in summer months were within 50 kilometers of the tagging location. Those recaptured in winter months were caught between 200 and 830 kilometers from the tagging location and indicated that the coastal waters of North Carolina and South Carolina serve as important winter nurseries from late October until May. Tag recaptures made in subsequent summers suggest that most juvenile sandbar sharks return to the same summer nurseries annually. Ultrasonic telemetry was used in investigate the diel activity patterns of juvenile C. plumbeus in Chesapeake Bay. Ten sharks were tracked for 10 to 50 consecutive hours. Swimming direction was correlated with mean direction of 2 tidal currents. Mean activity space was conservatively estimated to be 110 km2, which is two orders of magnitude greater than that reported for other carcharhiniform species. Swimming depth ranged from surface to 40 meters and was significantly deeper during the day (12.8 meters) than during the night (8.5 meters). This diel activity pattern and large activity space is hypothesized to be an adaptation for foraging on patchy prey in a productive, yet dynamic, temperate estuary

    Age, Growth, and Reproductive Biology of Cownose Rays in Chesapeake Bay

    Get PDF
    The Cownose Ray Rhinoptera bonasus is an opportunistic predator of benthic invertebrates and has had a long history of negative interactions with commercial shellfish industries. Most recently, Cownose Rays have been implicated in negatively affecting the recovery of bay scallop Argopecten irradians stocks in North Carolina and oyster restoration and commercial aquaculture efforts in Chesapeake Bay. A mitigation attempt to decrease predation on shellfish has resulted in an unregulated fishery for Cownose Rays. Cownose Ray life history suggests that they are highly susceptible to overexploitation. We determined age, growth, and size at maturity for Cownose Rays collected in Chesapeake Bay. In total, 694 rays were used for the study: 246 males ranging in size from 30.0 to 98.0cm disc width (DW) and 448 females ranging from 30.0 to 110.5cm DW. The oldest individual observed was a female (107cm DW) estimated at age 21. Our data suggested that Cownose Rays grow considerably faster during the first few years than has been previously reported, thus producing higher estimates of the growth coefficient k. The best-fit growth models (three-parameter von Bertalanffy models) estimated k-values of 0.2741 for males and 0.1931 for females. The large sample size and inclusion of many older animals (n = 119 rays over age 10) resulted in theoretical maximum size estimates that matched the observed sizes well. The median size at 50% maturity was 85-86cm DW for males and females (corresponding to ages of approximate to 6-7 for males and approximate to 7-8 for females). Fecundity in Cownose Rays was typically one embryo per mature female, with a gestation period of 11-12 months. Our study confirms that the Cownose Ray is a K-selected species with late maturity, long gestation, and low reproductive potential, indicating that it could be highly susceptible to overexploitation

    Validation of a portable, waterproof blood pH analyser for elasmobranchs

    Get PDF
    Quantifying changes in blood chemistry in elasmobranchs can provide insights into the physiological insults caused by anthropogenic stress, and can ultimately inform conservation and management strategies. Current methods for analysing elasmobranch blood chemistry in the field are often costly and logistically challenging. We compared blood pH values measured using a portable, waterproof pH meter (Hanna Instruments HI 99161) with blood pH values measured by an i- STAT system (CG4+ cartridges), which was previously validated for teleost and elasmobranch fishes, to gauge the accuracy of the pH meter in determining whole blood pH for the Cuban dogfish (Squalus cubensis) and lemon shark (Negaprion brevirostris). There was a significant linear relationship between values derived via the pH meter and the i- STAT for both species across a wide range of pH values and temperatures (Cuban dogfish: 6.8-7.1 pH 24-30 degrees C; lemon sharks: 7.0-7.45 pH 25-31 degrees C). The relative error in the pH meter's measurements was similar to +/- 2.7%. Using this device with appropriate correction factors and consideration of calibration temperatures can result in both a rapid and accurate assessment of whole blood pH, at least for the two elasmobranch species examined here. Additional species should be examined in the future across a wide range of temperatures to determine whether correction factors are universal

    Standardized Catch Rates of Sandbar Sharks and Dusky Sharks in the VIMS Longline Survey: 1975-2009

    Get PDF
    The Virginia Institute of Marine Science has conducted a fishery-independent longline survey during summer months since 1974. Data for sandbar sharks and dusky sharks captured in the survey between 1975 and 2009 are presented. Most of the sandbar sharks encountered by the survey were immature, with females composing almost all of the mature sandbar catch. Almost all dusky sharks captured were immature. Most of the catch since the early 1990’s has been composed of 0-4 year age classes. Nominal and standardized catch rates are presented. CPUE for both species decreased from the early 1980’s to minima in 1992. CPUE then slightly increased and has oscillated since

    Critical assessment and ramifications of a purported marine trophic cascade

    Get PDF
    When identifying potential trophic cascades, it is important to clearly establish the trophic linkages between predators and prey with respect to temporal abundance, demographics, distribution, and diet. In the northwest Atlantic Ocean, the depletion of large coastal sharks was thought to trigger a trophic cascade whereby predation release resulted in increased cownose ray abundance, which then caused increased predation on and subsequent collapse of commercial bivalve stocks. These claims were used to justify the development of a predator-control fishery for cownose rays, the “Save the Bay, Eat a Ray” fishery, to reduce predation on commercial bivalves. A reexamination of data suggests declines in large coastal sharks did not coincide with purported rapid increases in cownose ray abundance. Likewise, the increase in cownose ray abundance did not coincide with declines in commercial bivalves. The lack of temporal correlations coupled with published diet data suggest the purported trophic cascade is lacking the empirical linkages required of a trophic cascade. Furthermore, the life history parameters of cownose rays suggest they have low reproductive potential and their populations are incapable of rapid increases. Hypothesized trophic cascades should be closely scrutinized as spurious conclusions may negatively influence conservation and management decision

    Description of a new deep-water dogfish shark from Hawaii, with comments on the Squalus mitsukurii species complex in the West Pacific

    Get PDF
    Dogfish sharks of the genus Squalus are small, deep-water sharks with a slow rate of molecular evolution that has led to their designation as a series of species complexes, with low between-species diversity relative to other taxa. The largest of these complexes is named for the Shortspine spurdog (Squalus mitsukurii Jordan & Snyder), a medium-sized dogfish shark common to warm upper slope and seamount habitats, with a putative circumglobal distribution that has come under investigation recently due to geographic variation in morphology and genetic diversity. The Hawaiian population of Squalus mitsukurii was examined using both morphological and molecular analyses, putting this group in an evolutionary context with animals from the type population in Japan and closely-related congeners. External morphology differs significantly between the Hawaiian and Japanese S. mitsukurii, especially in dorsal fin size and relative interdorsal length, and molecular analysis of 1,311 base pairs of the mitochondrial genes ND2 and COI show significant, species-level divergence on par with other taxonomic studies of this genus. The dogfish shark in Hawaii represents a new species in the genus, and the name Squalus hawaiiensis, the Hawaiian spurdog, is designated after the type location

    Origins of the Greenland shark (Somniosus microcephalus): Impacts of ice-olation and introgression

    Get PDF
    Herein, we use genetic data from 277 sleeper sharks to perform coalescent-based modeling to test the hypothesis of early Quaternary emergence of the Greenland shark (Somniosus microcephalus) from ancestral sleeper sharks in the Canadian Arctic-Subarctic region. Our results show that morphologically cryptic somniosids S. microcephalus and Somniosus pacificus can be genetically distinguished using combined mitochondrial and nuclear DNA markers. Our data confirm the presence of genetically admixed individuals in the Canadian Arctic and sub-Arctic, and temperate Eastern Atlantic regions, suggesting introgressive hybridization upon secondary contact following the initial species divergence. Conservative substitution rates fitted to an Isolation with Migration (IM) model indicate a likely species divergence time of 2.34 Ma, using the mitochondrial sequence DNA, which in conjunction with the geographic distribution of admixtures and Pacific signatures likely indicates speciation associated with processes other than the closing of the Isthmus of Panama. This time span coincides with further planetary cooling in the early Quaternary period followed by the onset of oscillating glacial-interglacial cycles. We propose that the initial S. microcephalus–S. pacificus split, and subsequent hybridization events, were likely associated with the onset of Pleistocene glacial oscillations, whereby fluctuating sea levels constrained connectivity among Arctic oceanic basins, Arctic marginal seas, and the North Atlantic Ocean. Our data demonstrates support for the evolutionary consequences of oscillatory vicariance via transient oceanic isolation with subsequent secondary contact associated with fluctuating sea levels throughout the Quaternary period—which may serve as a model for the origins of Arctic marine fauna on a broad taxonomic scale

    Philopatry and regional connectivity of the great hammerhead shark, Sphyrna mokarran in the U.S. and Bahamas

    Get PDF
    A thorough understanding of movement patterns of a species is critical for designing effective conservation and management initiatives. However, generating such information for large marine vertebrates is challenging, as they typically move over long distances, live in concealing environments, are logistically difficult to capture and, as upper-trophic predators, are naturally low in abundance. Large-bodied, broadly distributed tropical shark typically restricted to coastal and shelf habitats, the great hammerhead shark Sphyrna mokarran epitomizes such challenges. Highly valued for its fins (in target and incidental fisheries), it suffers high bycatch mortality coupled with fecundity conservative life history, and as a result, is vulnerable to over-exploitation and population depletion. Although there are very little species-specific data available, the absence of recent catch records give cause to suspect substantial declines across its range. Here, we used biotelemetry techniques (acoustic and satellite), conventional tagging, laser-photogrammetry, and photo-identification to investigate the level of site fidelity/residency for great hammerheads to coastal areas in the Bahamas and U.S., and the extent of movements and connectivity of great hammerheads between the U.S. and Bahamas. Results revealed large-scale return migrations (3030 km), seasonal residency to local areas (some for 5 months), site fidelity (annual return to Bimini and Jupiter for many individuals) and numerous international movements. These findings enhance the understanding of movement ecology in great hammerhead sharks and have potential to contribute to improved cons

    A subtropical embayment serves as essential habitat for sub-adults and adults of the critically endangered smalltooth sawfish

    Get PDF
    Date of Acceptance: 06/03/2015Identifying essential habitat for large, mobile endangered species is difficult, particularly marine species where visual observations are limited. Though various methods of telemetry are available, each suffers from limitations and only provides satisfactory information over a specific temporal or spatial scale. Sawfish are one of the most imperilled groups of fishes, with every species worldwide listed as endangered or critically endangered. Whereas movements of juvenile sawfish are fairly well studied, much less is known about adults due to their rarity and the challenging environments they live in. Previous encounter records have identified Florida Bay in the Everglades National Park as a potentially important habitat for adults of the critically endangered smalltooth sawfish (Pristis pectinata). We used a combination of acoustic and satellite telemetry, as well as conventional tagging, to determine patterns of movement and residency by sub-adult and adult sawfish. Over short time periods, movements appeared primarily tidal driven with some evidence that animals moved into shallow water during the ebbing or flooding tides. Adult sawfish sexually segregated seasonally with males found by mangrove-lined canals in the spring and females predominantly found in outer parts of the bay. Males migrated from canals starting in late May potentially as temperatures increased above 30°C. Some males and females migrated north during the summer, while others may have remained within deeper portions of Florida Bay. Male sawfish displayed site fidelity to Florida Bay as some individuals were recaptured 1-2 years after originally being tagged. We hypothesize that mating occurs in Florida Bay based on aggregations of mature animals coinciding with the proposed mating period, initial sexual segregation of adults followed by some evidence of females moving through areas where males show seasonal residency, and a high percentage of animals showing evidence of rostrum inflicted injuries. The combination of methods providing movement data over a range of spatial and temporal scales reveals that sub-tropical embayments serve as essential habitat for adult smalltooth sawfish.Publisher PDFPeer reviewe
    • …
    corecore