182 research outputs found

    Estimating the health benefits of progeny extraction units as a means of reducing exposure to radon

    Get PDF
    Radon exposure to the general public can be reduced by preventing entry of radon gas into buildings using a passive radon-proof membrane or an active sump and pump system. However, a significant majority of the radiation dose delivered is from the decay products of radon rather than from the gas itself. These decay products (also referred to as progeny) are present in indoor air, with an equilibrium factor – a measure of the ratio of progeny to radon gas – of between 0.4 to 0.5. As a result, systems which extract radon progeny from the air by filtering have been promoted as means of reducing exposure to the general population. The European Community Radon Software (ECRS) offers a means of estimating lung-cancer risk associated with an individual’s exposure to radon, and includes the possibility of estimating the health risk from different proportions of radon gas and its progeny by varying the value of the Equilibrium Factor. This software was used to estimate the health benefits associated with reduced decay products in differing concentrations of radon gas. The results were compared to health benefits expected if the risk was reduced by the standard method of reducing the radon gas concentration below the Action Level, which in the UK is 200 Bq·m-3 for domestic properties. These calculations showed that there is the potential for efficient extraction units to provide the necessary dose and risk reduction where initial average radon gas concentrations are up to 800 Bq·m-3. However, above 1000 Bq·m-3, such systems cannot reduce the health risk sufficiently to reach levels comparable to those resulting from radon gas reduction to below the Action Leve

    SN1991bg-like supernovae are associated with old stellar populations

    Full text link
    SN1991bg-like supernovae are a distinct subclass of thermonuclear supernovae (SNe Ia). Their spectral and photometric peculiarities indicate their progenitors and explosion mechanism differ from `normal' SNe Ia. One method of determining information about supernova progenitors we cannot directly observe is to observe the stellar population adjacent to the apparent supernova explosion site to infer the distribution of stellar population ages and metallicities. We obtain integral field observations and analyse the spectra extracted from regions of projected radius kpc\sim\,\mathrm{kpc} about the apparent SN explosion site for 11 91bg-like SNe in both early- and late-type galaxies. We utilize full-spectrum spectral fitting to determine the ages and metallicities of the stellar population within the aperture. We find that the majority of the stellar populations that hosted 91bg-like supernovae have little recent star formation. The ages of the stellar populations suggest that that 91bg-like SN progenitors explode after delay times of >6Gyr>6\,\mathrm{Gyr}, much longer than the typical delay time of normal SNe Ia, which peaks at 1Gyr\sim 1\,\mathrm{Gyr}.Comment: 12 pages, 3 figures, 3 tables, submitted to Publications of the Astronomical Society of Australi

    Interpreting short and medium exposure etched-track radon measurements to determine whether an action level could be exceeded

    Get PDF
    Radon gas is naturally occurring, and can concentrate in the built environment. It is radioactive and high concentration levels within buildings, including homes, have been shown to increase the risk of lung cancer in the occupants. As a result, several methods have been developed to measure radon. The long-term average radon level determines the risk to occupants, but there is always pressure to complete measurements more quickly, particularly when buying and selling the home. For many years, the three-month exposure using etched-track detectors has been the de facto standard, but a decade ago, Phillips et al. (2003), in a DEFRA funded project, evaluated the use of 1-week and 1-month measurements. They found that the measurement methods were accurate, but the challenge lay in the wide variation in radon levels - with diurnal, seasonal, and other patterns due to climatic factors and room use. In the report on this work, and in subsequent papers, the group proposed methodologies for 1-week, 1-month and 3-month measurements and their interpretation. Other work, however, has suggested that 2-week exposures were preferable to 1-week ones. In practice, the radon remediation industry uses a range of exposure times, and further guidance is required to help interpret these results. This paper reviews the data from this study and a subsequent 4-year study of 4 houses, re-analysing the results and extending them to other exposures, particularly for 2-week and 2-month exposures, and provides comprehensive guidance for the use of etched-track detectors, the value and use of Seasonal Correction Factors (SCFs), the uncertainties in short and medium term exposures and the interpretation of results

    A BMPR2/YY1 Signaling Axis Is Required for Human Cytomegalovirus Latency in Undifferentiated Myeloid Cells.

    Get PDF
    Human cytomegalovirus (HCMV) presents a major health burden in the immunocompromised and in stem cell transplant medicine. A lack of understanding about the mechanisms of HCMV latency in undifferentiated CD34+ stem cells, and how latency is broken for the virus to enter the lytic phase of its infective cycle, has hampered the development of essential therapeutics. Using a human induced pluripotent stem cell (iPSC) model of HCMV latency and patient-derived myeloid cell progenitors, we demonstrate that bone morphogenetic protein receptor type 2 (BMPR2) is necessary for HCMV latency. In addition, we define a crucial role for the transcription factor Yin Yang 1 (YY1) in HCMV latency; high levels of YY1 are maintained in latently infected cells as a result of BMPR2 signaling through the SMAD4/SMAD6 axis. Activation of SMAD4/6, through BMPR2, inhibits TGFbeta receptor signaling, which leads to the degradation of YY1 via induction of a cellular microRNA (miRNA), hsa-miR-29a. Pharmacological targeting of BMPR2 in progenitor cells results in the degradation of YY1 and an inability to maintain latency and renders cells susceptible to T cell killing. These data argue that BMPR2 plays a role in HCMV latency and is a new potential therapeutic target for maintaining or disrupting HCMV latency in myeloid progenitors. IMPORTANCE Understanding the mechanisms which regulate HCMV latency could allow therapeutic targeting of the latent virus reservoir from where virus reactivation can cause severe disease. We show that the BMPR2/TGFbeta receptor/YY1 signaling axis is crucial to maintain HCMV latency in undifferentiated cells and that pharmacological reduction of BMPR2 in latently infected cells leads to reactivation of the viral lytic transcription program, which renders the infected cell open to immune detection and clearance in infected individuals. Therefore, this work identifies key host-virus interactions which regulate HCMV latent infection. It also demonstrates a potential new therapeutic approach to reduce HCMV reactivation-mediated disease by the treatment of donor stem cells/organs prior to transplantation, which could have a major impact in the transplant disease setting

    A critical analysis of climatic influences on indoor radon concentrations: implications for seasonal correction

    Get PDF
    Although statistically-derived national Seasonal Correction Factors (SCFs) are conventionally used to convert sub-year radon concentration measurements to an annual mean, it has recently been suggested that external temperature could be used to derive local SCFs for short-term domestic measurements. To validate this approach, hitherto unanalysed radon and temperature data from an environmentally-stable location were analysed. Radon concentration and internal temperature were measured over periods totalling 1025 days during an overall period of 1762 days, the greatest continuous sampling period being 334 days, with corresponding meteorological data collected at a weather station 10 km distant. Mean daily, monthly and annual radon concentrations and internal temperatures were calculated. SCFs derived using monthly mean radon concentration, external temperature and internal-external temperature-difference were cross-correlated with each other and with published UK domestic SCF sets. Relatively good correlation exists between SCFs derived from radon concentration and internal-external temperature difference but correlation with external temperature, was markedly poorer. SCFs derived from external temperature correlate very well with published SCF tabulations, confirming that the complexity of deriving SCFs from temperature data may be outweighed by the convenience of using either of the existing domestic SCF tabulations. Mean monthly radon data fitted to a 12-month sinusoid showed reasonable correlation with many of the annual climatic parameter profiles, exceptions being atmospheric pressure, rainfall and internal temperature. Introducing an additional 6-month sinusoid enhanced correlation with these three parameters, the other correlations remaining essentially unchanged. Radon latency of the order of months in moisture-related parameters suggests that the principal driver for radon is total atmospheric moisture content rather than relative humidity

    Short and long-term radon measurements in domestic premises: reporting results in terms of the HPA action and target levels

    Get PDF
    In the UK, the Action Level for radon gas in domestic buildings has stood at 200 Bq.m-3 for many years. Some years ago, our group made an extensive study of 7-day, 1-month and 3-month measurements in thirty-four un-remediated dwellings in a high-radon area over a full year. It was shown that one-week exposures were less reliable indicators of the long-term radon level, but that this variability was related to the changes in radon level, due to occupancy, weather changes and other influences. Our analysis reported the confidence limits for each detection period, and recommended a protocol for reporting. Short-term measurements can be reliable indicators in low-radon areas or for new properties, but in high-radon areas, the use of three-month exposures is indicated. In 2010 the UK Health Protection Agency (HPA) recommended the introduction of a lower Target Level of 100 Bq.m-3, with the intention of encouraging those most at risk from radon to consider remediation of their homes, even if the long-term average is between 100 and 200 Bq.m-3. We have reviewed the results of the previous survey in relation to the new Target Level, and report on the limits of confidence established for establishing whether a short-term result is over the target level, and proposes a reporting schem

    SAMI-HI: the connection between global asymmetry in the ionised and neutral atomic hydrogen gas in galaxies

    Full text link
    Observations of the neutral atomic hydrogen (HI) gas in galaxies are predominantly spatially unresolved, in the form of a global HI spectral line. There has been substantial work on quantifying asymmetry in global HI spectra (`global HI asymmetry'), but due to being spatially unresolved, it remains unknown what physical regions of galaxies the asymmetry traces, and whether the other gas phases are affected. Using optical integral field spectrograph (IFS) observations from the Sydney AAO Multi-object IFS (SAMI) survey for which global HI spectra are also available (SAMI-HI), we study the connection between asymmetry in galaxies' ionised and neutral gas reservoirs to test if and how they can help us better understand the origin of global HI asymmetry. We reconstruct the global Hα\alpha spectral line from the IFS observations and find that, while some global Hα\alpha asymmetries can arise from disturbed ionised gas kinematics, the majority of asymmetric cases are driven by the distribution of Hα\alpha-emitting gas. When compared to the HI, we find no evidence for a relationship between the global Hα\alpha and HI asymmetry. Further, a visual inspection reveals that cases where galaxies have qualitatively similar Hα\alpha and HI spectral profiles can be spurious, with the similarity originating from an irregular 2D Hα\alpha flux distribution. Our results highlight that comparisons between global Hα\alpha and HI asymmetry are not straightforward, and that many global HI asymmetries trace disturbances that do not significantly impact the central regions of galaxies.Comment: 11 pages, 6 figures, 1 appendix, accepted for publication in MNRA

    Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments

    Get PDF
    Little is known about the microbial ecology of the deep seabed. Here, Dong et al. predict metabolic capabilities and microbial interactions in deep seabed petroleum seeps using shotgun metagenomics, sediment geochemistry, metabolomics, and thermodynamic modelling

    Mapping species distributions: A comparison of skilled naturalist and lay citizen science recording

    Get PDF
    To assess the ability of traditional biological recording schemes and lay citizen science approaches to gather data on species distributions and changes therein, we examined bumblebee records from the UK’s national repository (National Biodiversity Network) and from BeeWatch. The two recording approaches revealed similar relative abundances of bumblebee species but different geographical distributions. For the widespread common carder (Bombus pascuorum), traditional recording scheme data were patchy, both spatially and temporally, reflecting active record centre rather than species distribution. Lay citizen science records displayed more extensive geographic coverage, reflecting human population density, thus offering better opportunities to account for recording effort. For the rapidly spreading tree bumblebee (Bombus hypnorum), both recording approaches revealed similar distributions due to a dedicated mapping project which overcame the patchy nature of naturalist records. We recommend, where possible, complementing skilled naturalist recording with lay citizen science programmes to obtain a nation-wide capability, and stress the need for timely uploading of data to the national repository
    corecore