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ARTICLE

Metabolic potential of uncultured bacteria
and archaea associated with petroleum seepage
in deep-sea sediments
Xiyang Dong 1, Chris Greening 2, Jayne E. Rattray1, Anirban Chakraborty 1, Maria Chuvochina2,

Daisuke Mayumi1,3, Jan Dolfing 4, Carmen Li1, James M. Brooks5, Bernie B. Bernard5, Ryan A. Groves1,

Ian A. Lewis1 & Casey R.J. Hubert1

The lack of microbial genomes and isolates from the deep seabed means that very little is

known about the ecology of this vast habitat. Here, we investigate energy and carbon

acquisition strategies of microbial communities from three deep seabed petroleum seeps

(3 km water depth) in the Eastern Gulf of Mexico. Shotgun metagenomic analysis reveals

that each sediment harbors diverse communities of chemoheterotrophs and chemolitho-

trophs. We recovered 82 metagenome-assembled genomes affiliated with 21 different

archaeal and bacterial phyla. Multiple genomes encode enzymes for anaerobic oxidation

of aliphatic and aromatic compounds, including those of candidate phyla Aerophobetes,

Aminicenantes, TA06 and Bathyarchaeota. Microbial interactions are predicted to be driven

by acetate and molecular hydrogen. These findings are supported by sediment geochemistry,

metabolomics, and thermodynamic modelling. Overall, we infer that deep-sea sediments

experiencing thermogenic hydrocarbon inputs harbor phylogenetically and functionally

diverse communities potentially sustained through anaerobic hydrocarbon, acetate and

hydrogen metabolism.
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Deep-sea sediments, generally understood to be those
occurring in water depths greater than ~500 m, represent
one of the largest habitats on Earth. In recent years,

culture-independent 16S rRNA gene surveys and metagenomic
studies have revealed these sediments host a vast abundance and
diversity of bacteria and archaea1–6. Cell numbers decrease with
sediment depth and age, from between 106 and 1010 cm−3 in the
upper cm at the sediment–water interface to below 104 cm−3

several kilometers below the ocean floor7. However, due to a lack
of cultured representatives and genomes recovered from deep-sea
sediments, it remains largely unresolved how microorganisms
survive and function in these nutrient-limited ecosystems. Energy
and carbon sources are essential requirements that allow the
buried microorganisms to persist. With sunlight not reaching the
deep seabed, photosynthetic processes do not directly support
these communities8. It has therefore been proposed that deep-sea
benthic and subseafloor microbes are primarily sustained by
complex detrital organic matter, including carbohydrates, pro-
teinaceous compounds, and humic substances, derived from the
overlying water column via sedimentation8,9.

Another important potential carbon and energy sources in
deep-sea sediments are petroleum geofluids that migrate from
subsurface reservoirs up to the seafloor. Petroleum compounds
include smaller gaseous molecules, such as methane, propane,
and butane, and larger aliphatic and aromatic liquids. Numerous
studies have investigated the role of methane oxidation in seabed
sediments, which is mediated by anaerobic methanotrophic
archaea (ANME), generally in syntrophy with bacteria respiring
sulfate or other electron acceptors2,4,6,10. In contrast, little is
known about the degradation of larger alkanes or aromatic
compounds by deep seabed microorganisms. Vigneron et al.1

performed a comparative gene-centric study of hydrocarbon and
methane seeps in the Gulf of Mexico, and suggested that
microorganisms in deep cold seeps (water depth ~1 km) can
potentially utilize a range of nonmethane hydrocarbons. How-
ever, due to the absence of metagenome binning in that study,
relevant metabolic functions were not assigned to specific path-
ways or taxa.

In addition to organic carbon compounds, microbial life in
deep-sea sediments is also supported by inorganic electron
donors. Some microorganisms have been isolated from deep
sediments that are able to sustain themselves by oxidizing ele-
mental sulfur, hydrogen sulfide, carbon monoxide, ammonia, and
molecular hydrogen (H2)4,6,8. Of these, H2 is a particularly
important energy source given its production in large quantities
by biological and geochemical processes. H2 can be generated as a
metabolic byproduct of fermentation, together with volatile fatty
acids such as acetate, during organic matter degradation7. H2 can
also be produced abiotically via serpentinization, radiolysis of
water, or thermal alteration of sedimentary organic matter11.
For example, the radiolysis of water by naturally occurring
radionuclides (e.g. 40K and 238U) is estimated to produce 1011

mol H2 per year6,12. Depending on the availability of electron
acceptors, H2 oxidation can be coupled to sulfate, nitrate, metal,
and organohalide respiration, as well as acetogenesis and
methanogenesis6,8.

In this study, we used culture-independent approaches to study
the role of microbial communities in the degradation of organic
matter, including both detrital biomass and petroleum hydro-
carbons. We performed metagenomic, geochemical and meta-
bolomic analyses of deep seabed sediments (water depth ~3 km).
Samples were chosen from three sites exhibiting evidence of
different levels of migrated thermogenic hydrocarbons. Meta-
genomes generated from sediment samples of each site were
assembled and binned to obtain metagenome-assembled genomes
(MAGs) and to reconstruct metabolic pathways for dominant

members of the microbial communities. Complementing this
genome-resolved metagenomics, a gene-centric analysis was
performed by directly examining unassembled metagenomic data.
Through the combination of metagenomics with geochemistry
and metabolomics, supported by thermodynamic modeling, we
provide evidence that (1) deep-sea sediments harbor phylogen-
etically diverse heterotrophic and lithotrophic microbial com-
munities; (2) some members from the candidate phyla are
engaged in degradation of aliphatic and aromatic compounds;
and (3) microbial community members are likely interconnected
via acetate and hydrogen metabolism.

Results
Hydrocarbon migration in seabed sediments. This study tested
three petroleum-associated near-surface sediments (referred to as
Sites E26, E29, and E44; see map in Supplementary Fig. 1)
sampled from the Eastern Gulf of Mexico13. Migrated thermo-
genic hydrocarbon content in the piston cores was analyzed for
each of the three sites (Table 1). All three sediments contained
high concentrations of aromatic compounds and liquid alkanes;
aromatic compounds were most abundant at Site E26, while
liquid alkanes were on average 2.5-fold higher concentration at
Sites E26 and E29 than Site E44. Alkane gases were only abundant
at Site E29 and were almost exclusively methane (CH4). CH4

sources can be inferred from stable isotopic compositions of CH4

and molar ratios of CH4 to higher hydrocarbons10. Ratios of C1/
(C2+ C3) were greater than 1000 and δ13C values of methane
were more negative than −60‰, indicating that the CH4 in these
sediments was predominantly biogenic10. Similar co-occurrence
of biogenic methane and complex hydrocarbons have been
reported in a nearby seep in the Mississippi Canyon in the Gulf of
Mexico14. GC-MS revealed an unresolved complex mixture
(UCM) of saturated hydrocarbons in the C15+ range in all three
sites. Such UCM signals correspond to degraded petroleum
hydrocarbons and may indicate the occurrence of oil biode-
gradation at these sites15.

Phylogenetically diverse bacterial and archaeal communities.
Illumina NextSeq sequencing of genomic DNA from deep-sea
sediment communities produced 85,825,930, 148,908,270, and
138,795,692 quality-filtered reads for Sites E26, E29, and E44,
respectively (Supplementary Table 1). The 16S rRNA gene
amplicon sequencing results suggest that the sediments harbor
diverse bacterial and archaeal communities, with Chao1 richness
estimates of 359, 1375, and 360 amplicon sequence variants
(ASVs) using bacterial-specific primers, and 195, 180 and 247
ASVs using archaeal-specific primers, for Sites E26, E29, and E44,
respectively (Supplementary Table 2 and Supplementary Fig. 2).
In accordance with amplicon sequencing results, taxonomic
profiling of metagenomes using small subunit ribosomal RNA
(SSU rRNA) marker genes demonstrated that the most abundant
phyla in the metagenomes were, in decreasing order, Chloroflexi
(mostly classes Dehalococcoidia and Anaerolineae), Candidatus
Atribacteria, Proteobacteria (mostly class Deltaproteobacteria),
and Candidatus Bathyarchaeota (Supplementary Data 1 and
Fig. 1a). While the three sites share a broadly similar community
composition, Ca. Bathyarchaeota and Proteobacteria were nota-
bly in higher relative abundance at the sites associated with more
hydrocarbons (E29 and E26; Table 1), whereas the inverse is true
for Actinobacteria, the Patescibacteria group, and Ca. Aero-
phobetes that are all present in higher relative abundance at Site
E44 where associated hydrocarbon levels are lower. Additional
sampling is required to determine whether these differences are
due to the presence of hydrocarbons or other factors.
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Assembly and binning for the three metagenomes resulted in a
total of 82 MAGs with >50% completeness and <10%
contamination based on CheckM analysis16. Reconstructed
MAGs comprise taxonomically diverse members from a total of
six archaeal and 15 bacterial phyla (Fig. 2 and Supplementary
Data 2). Within the domain Bacteria, members of the phylum
Chloroflexi are highly represented in each sample, especially from

the classes Dehalococcoidia and Anaerolineae. Within the domain
Archaea, members of phylum Bathyarchaeota were recovered
from all three sites. Most other MAGs belong to poorly
understood candidate phyla that lack cultured representatives,
including Aminicenantes (formerly OP8), Aerophobetes (for-
merly CD12), Cloacimonas (formerly WWE1), Stahlbacteria
(formerly WOR-3), Atribacteria (formerly JS1 and OP9), TA06
(Supplementary Note 1 and Supplementary Data 3), and the
Asgard superphylum, including Lokiarchaeota, Thorarchaeota,
and Heimdallarchaeota.

In summary, while there are considerable community-level
differences between the three sample locations, the recovered
MAGs share common taxonomic affiliations at the phylum and
class levels. Guided by associated geochemistry from the three
sediment cores (Table 1 and Supplementary Note 2), we
subsequently analyzed the metabolic potential of these MAGs
to understand how bacterial and archaeal community members
generate energy and biomass in these natural petroleum-
associated deep-sea environments. Hidden Markov models
(HMMs) and homology-based models were used to search for
the presence of different metabolic genes in both the recovered
MAGs and unbinned metagenomes. Where appropriate, findings
were further validated through metabolomic analyses, phyloge-
netic visualization, and analysis of gene context.

Detrital biomass and hydrocarbon degradation. In deep-sea
marine sediments, organic carbon is supplied either as detrital

Table 1 Geochemical description of sediment samples from
Sites E26, E29, and E44

Core ID Site E26 Site E29 Site E44

Latitude (N) 26.59 27.43 26.28
Longitude (W) 87.51 86.01 86.81
Water depth (km) 2.8 3.2 3.0
TSF Max 57,326.7 26,738.3 13,502.3
UCM (μg g−1) 32 13 7.3
Σn-Alkanes (ng g−1) 2845.3 2527 1045
T/D ratio 1.0 2.6 0.8
ΣAlkane gas (ppm) 9 36,012 9.9
C2+ Alkanes (ppm) 0.3 17.5 0.5
C1/(C2+ C3) NA 3974.2 NA
δ13CH4 (‰, vs. PDB)a NA −85.1 NA

TSF Max total scanning fluorescence maximum intensity. UCM unresolved complex mixture. Σn-
Alkanes sum of C15−C34 n-alkanes. ΣAlkane Gas total alkane gases. C2+ Alkanes sum of alkane
gases larger than methane. T/D thermogenic/diagenetic n-alkane
a The δ13CH4 values in Sites E26 and E29 could not be determined due to low methane
concentration, which can be approximated by subtracting C2+ Alkanes from ΣAlkane Gas
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matter from the overlying water column or as aliphatic and
aromatic petroleum compounds that migrate upwards from
underlying petroleum-bearing sediments8. With respect to
detrital matter, genes involved in carbon acquisition and break-
down were prevalent across both archaeal and bacterial MAGs.
These include genes encoding intracellular and extracellular
carbohydrate-active enzymes and peptidases, as well as relevant
transporters and glycolysis enzymes (Fig. 3 and Supplementary
Data 4). The ability to break down fatty acids and other organic
acids via the beta-oxidation pathway was identified in 13 MAGs,
including members of Chloroflexi, Deltaproteobacteria, Aero-
phobetes and Lokiarchaeota (Fig. 3 and Supplementary Data 4).
Metabolomics data supported these genomic predictions and
showed a surprising degree of consistency between the geo-
graphically distinct sampling sites (Fig. 4). Over 50 metabolites

from eight pathways were detected in all the samples, including
carbohydrate metabolism (e.g. glucose), amino acid metabolism
(e.g. glutamate), and beta-oxidation (e.g. 10-hydroxydecanoate).
Together, the metagenomic and metabolomic data suggest that
seabed microorganisms are involved in recycling of residual
organic matter, including complex carbohydrates, proteins and
lipids.

To identify the potential for microbial degradation of
hydrocarbons, we focused on functional marker genes encoding
enzymes that initiate anaerobic hydrocarbon biodegradation by
activating mechanistically stable C−H bonds17. We obtained
evidence that two of the four known pathways for oxygen-
independent C−H activation17–20 were present: hydrocarbon
addition to fumarate by glycyl-radical enzymes20 and hydroxyla-
tion with water by molybdenum cofactor-containing enzymes17.
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Glycyl-radical enzymes proposed to mediate hydrocarbon addi-
tion to fumarate were found in 13 MAGs (Chloroflexi,
Aminicenantes, Aerophobetes, Actinobacteria, Bathyarchaeota,
Thorarchaeota, and Lokiarchaeota) (Fig. 3). The sequences
identified are phylogenetically distant from canonical akyl-/
arylalkylsuccinate synthases, but form a common clade with the

glycyl-radical enzymes proposed to mediate alkane activation in
anaerobic alkane degraders Vallitalea guaymasensis L81 and
Archaeoglobus fulgidus VC-16 21–23 (Supplementary Fig. 3).
Based on quality-filtered reads, canonical AssA (n-alkane
succinate synthase) and BssA (benzylsuccinate synthase) enzymes
are also encoded at these sites and were most abundant in Site
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E29 (Supplementary Table 3). In agreement with this, metabo-
lomics analysis detected six succinic acid conjugates involved in
hydrocarbon activation, including conjugates of xylene, toluene,
cyclohexane, and propane (Fig. 4). For the hydroxylation
pathway, a Dehalococcoidia MAG in Site E29 encoded proteins
sharing over 40% sequence identities to the catalytic subunits of
p-cymene dehydrogenase (Cmd) and alkane C2-methylene
hydroxylase (Ahy) (Fig. 3 and Supplementary Fig. 4)24. Genes
encoding enzymes catalyzing hydrocarbon carboxylation (ubiD-
like), reverse methanogenesis (mcrA-like), and aerobic hydro-
carbon degradation (e.g. alkB) were not detected (Supplementary
Table 3). The latter result is expected due to the low
concentrations of oxygen in the top 20 cm of organic rich seabed
sediments8.

Our results also provide evidence that aromatic compounds can
be anaerobically degraded via channeling into the central benzoyl-
CoA degradation pathway. Through metabolomic analysis, we
detected multiple intermediates (Fig. 4) involved in both the
production and degradation of benzoyl-CoA, a universal inter-
mediate formed during the degradation of aromatic compounds25.
Various compounds that can be activated to form benzoyl-CoA
were detected, including benzoate, benzylsuccinate, 4-hydroxy-
benzoate, phenylacetate, acetophenone, and phenol. The down-
stream metabolite glutarate was also highly abundant (Fig. 4).
Benzoyl-CoA can be reduced to cyclohex-1,5-diene-1-carboxyl-
CoA by either the Class I ATP-dependent benzoyl-CoA reductase
pathway (bcr genes, e.g. Thauera aromatica) or Class II ATP-
independent reductase (bam genes, e.g. sulfate reducers)26. We
identified bcr genes for the Class I pathways in 12 MAGs from
both bacteria (i.e., Dehalococcoidia, Anaerolineae, Deltaproteobac-
teria, Aminicenantes and TA06) and archaea (i.e., Thermoplasmata
and Bathyarchaeota) (Fig. 3 and Supplementary Fig. 5). Genes for
further transformation of dienoyl-CoA to 3-hydroxypimelyl-CoA
were also identified, i.e. those encoding 6-oxo-cyclohex-1-ene-
carbonyl-CoA hydrolase (oah), cyclohex-1,5-diencarbonyl-CoA
hydratase (dch) and 6-hydroxycyclohex-1-ene-1-carbonyl-CoA
dehydrogenases (had)27 (Supplementary Fig. 5). In combination,
these results strongly suggest that the organisms represented by
these MAGs mediate the typical downstream degradation of
aromatic compounds through the central benzoyl-CoA Bcr-Dch-
Had-Oah pathway. However, sources of benzoate other than via
anaerobic degradation of the above compounds cannot be ruled
out based on current data.

Production and consumption of acetate and hydrogen. Analysis
of MAGs from these deep-sea hydrocarbon-associated sediments
suggests that fermentation, rather than respiration, is the primary
mode of organic carbon turnover in these environments. Most
recovered MAGs with capacity for heterotrophic carbon degra-
dation lacked respiratory primary dehydrogenases and terminal
reductases, with exception of several Proteobacteria and one
Chloroflexi (Supplementary Data 4). In contrast, various MAGs
contained genes indicating the capability for fermentative pro-
duction of acetate (69 MAGs), lactate (14 MAGs), and ethanol

(6 MAGs) (Fig. 3 and Supplementary Data 4). These findings
therefore provide genomic evidence supporting other studies
emphasizing the importance of fermentation, including acetate
production, in deep-sea sediments9. Acetate can also be produced
by acetogenic CO2 reduction through the Wood−Ljungdahl
pathway using a range of inorganic and organic substrates10.
Partial or complete sets of genes for the Wood−Ljungdahl
pathway were found in 50 MAGs (Fig. 3 and Supplementary
Fig. 6), including those affiliated with phyla previously inferred to
mediate acetogenesis in deep-sea sediments through either the
tetrahydrofolate-dependent bacterial pathway (e.g. Chloroflexi
and Aerophobetes)5,28 or the tetrahydromethanopterin-
dependent archaeal variant (e.g. Bathyarchaeota and Asgard
group)29,30. In addition, the signature diagnostic gene for the
Wood−Ljungdahl pathway (acsB; acetyl-CoA synthase) is in high
relative abundance in the quality-filtered metagenome reads at all
three sites (Supplementary Table 3). The most abundant MAG at
each site were all putative acetogenic heterotrophs, i.e. Dehalo-
coccoidia E26_bin16, Actinobacteria E44_bin5, and Aminice-
nantes E29_bin47 for Sites E26, E44 and E29 respectively
(~3.3–4.5% relative abundance, Supplementary Data 2). These
observations are in agreement with mounting evidence that
homoacetogens play a quantitatively important role in organic
carbon cycling in the marine deep biosphere29,31,32.

The potential for H2 metabolism was also found in MAGs from
all three sites. We screened putative hydrogenase genes from
various subgroups in MAGs as well as unbinned metagenomic
sequences (Figs. 1 and 3, Supplementary Table 3, and
Supplementary Data 4). Surprisingly few H2 evolving-only
hydrogenases were observed, with only five Group A [FeFe]-
hydrogenases and five Group 4 [NiFe]-hydrogenases detected
across the bacterial and archaeal MAGs. Instead, the most
abundant hydrogenases within the MAGs and quality-filtered
unassembled reads were the Group 3b, 3c, and 3d [NiFe]-
hydrogenases. Group 3b and 3d hydrogenases are physiologically
reversible, but generally support fermentation in anoxic environ-
ments by coupling NAD(P)H reoxidation to fermentative H2

evolution33. Group 3c hydrogenases mediate a central step in
hydrogenotrophic methanogenesis, bifurcating electrons from H2

to heterodisulfides and ferredoxin34; their functional role in
bacteria and nonmethanogenic archaea remains unresolved33 yet
corresponding genes frequently co-occur with heterodisulfide
reductases across multiple archaeal and bacterial MAGs (Fig. 3).
Various Group 1 [NiFe]-hydrogenases were also detected, which
are known to support hydrogenotrophic respiration in conjunc-
tion with a wide range of terminal reductases. This is consistent
with previous studies in the Gulf of Mexico that experimentally
measured the potential for hydrogen oxidation catalyzed by
hydrogenase enzymes35.

Given the genomic evidence for hydrogen and acetate
production in these sediments, we investigated whether any of
the MAGs encoded terminal reductases to respire these
compounds. In agreement with porewater sulfate concentrations
(16–27 mM; see Supplementary Note 2), the key genes for
dissimilatory sulfate reduction (dsrAB) were present across the

Fig. 3 Identification of functional genes or pathways present in metagenome-assembled genomes. The presence of genes or pathways are indicated by
orange-shaded boxes. Aor, aldehyde:ferredoxin oxidoreductase; Kor, 2-oxoglutarate/2-oxoacid ferredoxin oxidoreductase; Por, pyruvate:ferredoxin
oxidoreductase; Ior, indolepyruvate ferredoxin oxidoreductase; GHs, glycoside hydrolases; AssA, catalytic subunit of alkylsuccinate synthase; CmdA,
catalytic subunit of p-cymene dehydrogenase; AhyA, catalytic subunit of alkane C2-methylene hydroxylase; H2ase, hydrogenase; DsrAB, dissimilatory
sulfite reductase. Pathways were indicated as being present if at least five genes in the Embden-Meyerhof-Parnas pathway, three genes in the beta-
oxidation pathway, four genes in the Wood−Ljungdahl pathway, and six genes in the TCA cycle were detected. Additional details for the central benzoyl-
CoA degradation pathway can be found in Supplementary Fig. 5. Lactate and ethanol fermentation are indicated if genes encoding respective
dehydrogenases were detected. More details about these functional genes and pathways can be found in the text and in Supplementary Data 4
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Fig. 4 Heatmap of metabolites identified in sediment pore water at Sites E26, E29, and E44. Metabolite levels were measured by LC-MS and observed
intensities are expressed as the log fractional abundance. Technical replicate numbers (n= 5) from each site are given on the bottom axis. Compound
names are listed on the right axis and pathway assignments on the left. Compounds denoted with an asterisk can be intermediates in both anaerobic and
aerobic metabolic pathways
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metagenome reads, particularly at Site E29 (Supplementary
Table 3); however, probably due to incompleteness of genomes
or insufficient binning, these genes were identified only in two
MAGs affiliated with Deltaproteobacteria and Dehalococcoidia
(Supplementary Data 4). We also identified 31 putative reductive
dehalogenase genes (rdhA) across 22 MAGs, mainly from
Aminicenantes and Bathyarchaeota (Fig. 3 and Supplementary
Data 4); this suggests that organohalides, which can be produced
through abiotic and biotic processes in marine ecosystems36, may
be electron acceptors in these deep-sea sediments. At least two
thirds of the MAGs corresponding to putative sulfate reducers
and dehalorespirers encoded the capacity to completely oxidize
acetate and other organic acids to CO2 using either the reverse
Wood−Ljungdahl pathway or TCA cycle (Fig. 3 and Supple-
mentary Data 4). Several of these MAGs also harbored the
capacity for hydrogenotrophic dehalorespiration via Group 1a
and 1b [NiFe]-hydrogenases (Fig. 3). In addition to these
dominant uptake pathways, one MAG belonging to the
epsilonproteobacterial genus Sulfurovum (E29_bin29) included
genes for the enzymes needed to oxidize either H2 (group 1b
[NiFe]-hydrogenase), elemental sulfur (soxABXYZ), and sulfide
(sqr), using nitrate as an electron acceptor (napAGH); this MAG
also has a complete set of genes for autotrophic CO2 fixation via
the reductive TCA cycle (Fig. 3 and Supplementary Data 4).

The capacity for methanogenesis appears to be relatively low.
The genes for methanogenesis were detected in quality-filtered
unassembled reads in all three sediments and were mainly
affiliated with acetoclastic methanogens at Site E29, and
hydrogenotrophic methanogens at the other two sites (Fig. 1d).
However, none of the MAGs contained mcrA genes. Overall, the
collectively weak mcrA signal in the metagenomes suggests that
the high levels of biogenic methane detected by geochemical
analysis (Table 1) is due to methanogenesis in deeper sediment
layers. Similar phenomena have been observed in other sites,
where mcrA genes are in low abundance despite clear
geochemical evidence for biogenic methane37. Sequencing addi-
tional sediment depths at greater resolution would likely result in
detection of methanogens and ANME lineages harboring mcrA
and related genes.

Thermodynamic modeling. Together, the geochemical, meta-
bolomic, and metagenomic data strongly indicate that anaerobic
degradation of aliphatic and aromatic compounds occurs in these
deep-sea sediments (Table 1; Figs. 3 and 4). Recreating the
environmental conditions for cultivating the organisms repre-
sented by the retrieved MAGs is a challenging process, preventing
further validation of the degradation capabilities of these com-
pounds (and other metabolisms) among the majority of the
lineages represented by the MAGs retrieved here32. Instead, we
provide theoretical evidence that anaerobic degradation of ali-
phatic and aromatic compounds is feasible in this environment
by modeling whether these processes are thermodynamically

favorable in the conditions typical of deep-sea sediments, namely
high pressure and low temperature.

As concluded from the genome analysis and supported by
metabolomics (Figs. 3 and 4), it is likely that anaerobic
degradation occurs through an incomplete oxidation pathway.
However, due to incompleteness of the reconstructed genomes,
we cannot exclude the possibility that complete oxidation of
aliphatic and aromatic compounds to CO2 occurs through, for
example, coupling with sulfate reduction (Fig. 3). Additionally,
several recent studies indicate that some aliphatic and aromatic
compounds can be incompletely oxidized to acetate via the Wood
−Ljungdahl pathway28,31,38. Therefore, we compared the ther-
modynamic constraints on anaerobic biodegradation for three
plausible scenarios (Table 2): (i) incomplete oxidation with
production of hydrogen and acetate, (ii) acetogenic oxidation
with production of acetate alone, and (iii) complete oxidation
coupled with sulfate reduction. Hexadecane and benzoate are
used as representative aliphatic and aromatic compounds,
respectively, based on the results of geochemistry and metabo-
lomics results (e.g. C2+ alkane and benzoate detection) and
genomic analysis (e.g. genes encoding for glycyl-radical enzymes
and bcr genes). Under deep-sea conditions, without taking the
in situ concentrations of hydrogen and acetate into consideration,
the calculations show that sulfate-dependent complete oxidation
of hexadecane and benzoate, as well as acetogenic oxidation of
benzoate, would be energetically favorable. The three other
reactions would be endergonic, but based on the measured
concentrations for both acetate and H2 in these sediments being
low (Supplementary Note 2) these reactions could also take place
in theory (Table 2 and Fig. 5). This suggests that acetate- and H2-
scavengers, by making acetogenic and hydrogenogenic degrada-
tion more thermodynamically favorable, may support activity of
anaerobic degraders in the community.

Discussion
In this study, metagenomics revealed that most of the bacteria
and archaea in the deep-sea sediment microbial communities
sampled belong to candidate phyla that lack cultured repre-
sentatives and sequenced genomes (Figs. 1 and 2). As a con-
sequence, it is challenging to link phylogenetic patterns with the
microbial functional traits underpinning the biogeochemistry of
deep seabed habitats. Here, we were able to address this by
combining de novo assembly and binning of metagenomic data
with petroleum geochemistry, metabolite identification, and
thermodynamic modeling. Pathway reconstruction from 82
MAGs recovered from the three deep-sea near-surface sediments
revealed that many community members were capable of
acquiring and hydrolyzing residual organic matter (Fig. 3),
whether supplied as detritus from the overlying water column or
as autochthonously produced necromass. Heterotrophic fermen-
ters and acetogens were in considerably higher relative abundance
than heterotrophic respirers, despite the abundance of sulfate in
the sediments (Supplementary Note 2). For example, while

Table 2 Thermodynamic parameters and Gibbs free energies for anaerobic benzoate and hexadecane degradation scenarios

Substrates Reaction types Reactions ΔGo (kJ) ΔHo (kJ) ΔG (kJ)a

Hexadecane 1. Hydrogenogenic oxidation C16H34+ 16H2O→ 8CH3COO−+ 17H2+ 8 H+ 1089.1 1069.8 753.3
2. Acetogenic oxidation C16H34+ 8.5HCO3

−→ 12.25CH3COO−+ 3.75 H+ +H2O 176.3 98.4 133.9
3. Complete oxidation C16H34+ 12.25SO4

2−→ 16HCO3
−+ 12.25HS−+H2O+ 3.75 H+ −407.3 24.9 −653.3

Benzoate 4. Hydrogenogenic oxidation C7H5O2
−+ 7H2O→ 3CH3COO−+HCO3

−+ 3 H2+ 3H+ 120.9 117.4 12.8
5. Acetogenic oxidation C7H5O2

−+ 0.5HCO3
−→ 3.75CH3COO−+ 2.25 H+ −846.3 −1091.3 −950.3

6. Complete oxidation C7H5O2
−+ 3.75SO4

2−+ 4H2O→ 7HCO3
−+ 3.755HS−+ 2.25 H+ −76.2 29.4 −230.7

aThe Gibbs free energies were calculated for deep-sea conditions of 4 °C, 300 atm, pH 8 and 2mM bicarbonate concentrations31
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genomic coverage of putative sulfate reducers is relatively low
(<1% of the communities), putative acetogenic heterotrophs were
the most abundant community members at each site. Therefore,
microbial communities in the deep seabed are likely shaped more
by the capacity to utilize available electron donors than by the
availability of oxidants. In line with the different geochemical
profiles at the three sites (Table 1), some differences in the
composition of microbial communities and the abundance of key
metabolic genes were observed (Fig. 1 and Supplementary
Table 3). However, metabolic capabilities such as fermentation,
acetogenesis, and hydrogen metabolism were conserved across
diverse phyla in each site (Fig. 3). This suggests some functional
redundancy in these microbial communities, similar to that
recently inferred in a study of Guaymas Basin hydrothermal
sediments39.

In this context, multiple lines of evidence indicate aliphatic or
aromatic compounds serve as carbon and energy sources for
anaerobic populations in these deep-sea hydrocarbon seep
environments (Tables 1, 2; Figs. 3–5). Whereas capacity for det-
rital organic matter degradation is a common feature in the
genomes retrieved in this study, and from many other environ-
ments in general40, anaerobic degradation of aliphatic or aromatic
compounds is a more exclusive feature that was detected in 19 out
of 82 MAGs. In all three sediments, there was metagenomic and
metabolomic evidence for anaerobic hydrocarbon oxidation via
hydrocarbon addition to fumarate and hydroxylation pathways,
as well as anaerobic aromatic compound degradation by the Class
I benzoyl-CoA reductase pathway. The ability to utilize aliphatic
or aromatic compounds may explain the ecological dominance
(high relative abundance) of certain lineages of bacteria and
archaea in these microbial communities (Fig. 1a). Many of the
detected phyla have previously been found to be associated with
hydrocarbons in various settings. For example, Aerophobetes
have been detected in other cold seep environments5, Aminice-
nantes are often found associated with fossil fuels41, and Chlor-
oflexi harboring genes for anaerobic hydrocarbon degradation
have been found in hydrothermal vent sediments2. While archaea

have been reported to mediate oxidation of methane and other
short-chain alkanes in sediments3,18, few have been reported to
anaerobically degrade larger hydrocarbons24. The finding that
Bathyarchaeota and other archaeal phyla are potentially capable
of anaerobic degradation of aliphatic or aromatic compounds
extends the potential substrate spectrum for archaea. More
broadly, building on recent findings18, this work emphasize that
nonmethane aliphatic and aromatic compounds could sig-
nificantly contribute to carbon and energy budgets in these deep-
sea settings.

Genomic analyses of the 12 MAGs harboring genes for central
benzoyl-CoA pathway indicate they have an acetogenic lifestyle.
The finding that these organisms use the ATP-consuming class I,
not the reversible class II, benzoyl-CoA reductase is surprising. It
is generally thought that strict anaerobes must use class II BCRs
because the amount of energy available from benzoate oxidation
during sulfate reduction or fermentation is not sufficient to
support the substantial energetic requirement of the ATP-
dependent class I BCR reaction27. However, there are reported
exceptions to these observations, such as the hyperthermophilic
archaeon Ferroglobus placidus that couples benzoate degradation
via the Class I system with iron reduction27, and fermentative
deep-sea Chloroflexi strains DscP3 and Dsc4 that contain genes
for class I benzoyl-CoA reductases28. Acetogenic oxidation may
explain why the Class I reaction is energetically favorable; ther-
modynamic modeling indicates the free Gibbs energy yield of
acetogenic oxidation of benzoate is much higher than its hydro-
genogenic or complete oxidation (Table 2). These inferences are
in line with mounting evidence that acetogens are important
community members in energy-limited seafloor ecosystems29,31.
Acetogens may be favored in such ecosystems given their utili-
zation of many organic compounds is thermodynamically
favorable, and their relatively high ATP yields29,31.

Based on the evidence presented here, we propose that acetate
and hydrogen are the central intermediates underpinning com-
munity interactions and biogeochemical cycling in these deep-sea
sediments. Despite the presence of putative acetogens and
hydrogenogens, acetate and hydrogen were below the limits of
detection in sediment porewater (Supplementary Note 2), indi-
cating both compounds are rapidly turned over by other com-
munity members. Consistently, microbial communities encoded
the genes for the coupling of acetate consumption to sulfate
reduction, organohalide respiration, and acetoclastic methano-
genesis, consistent with other studies38,42. Some community
members also appear to be capable of H2 consumption, including
through respiratory membrane-bound enzymes and reversible
cytosolic enzymes. In turn, hydrogen oxidation can support
autotrophic carbon fixation and therefore may provide a feedback
loop for regeneration of organic carbon. Moreover, acetate- and
hydrogen-oxidizing community members are likely to promote
upstream acetogenic and hydrogenogenic degradation of necro-
mass and aliphatic or aromatic compounds. Thermodynamic
modeling indicates that maintaining low acetate and hydrogen
concentrations in the environment is important for promoting
continuous oxidation of organic substrates (Table 2 and Fig. 5).

Methods
Sample selection based on geochemical characterization. The three marine
sediment samples used in this study were chosen from among several sites sampled
as part of a piston coring seafloor survey in the Eastern Gulf of Mexico, as
described previously13. Piston cores penetrating 5−6 m below seafloor (mbsf) were
sectioned in 20 cm intervals on board the research vessel immediately following
their retrieval. Three intervals from the bottom half of the core were chosen for
geochemical analysis, and were either frozen immediately (for liquid hydrocarbon
analyses), or flushed with N2 and sealed in hydrocarbon-free gas tight metal
canisters then frozen until analysis (for gaseous hydrocarbon analysis). Interstitial
gas analysis was later performed on the headspace in the canisters using GC
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Fig. 5 Thermodynamic constraints on anaerobic benzoate and hexadecane
degradation. Three reactions (Reactions 1, 2, and 4) are illustrated as taken
from Table 2 where ΔG > 0. Thermodynamics for each reaction are
indicated by a line in its corresponding color. If ΔG < 0, the reaction is
energetically favorable (indicated by arrow), and if ΔG > 0 the reaction is
assumed not to occur. In the studied environment (outlined in the shaded
area), hydrogen concentrations fall below 1 µM while acetate concentrations
are below 2.5 µM. The graph shows that ΔG for three reactions are all
negative when both actual concentrations of acetate and hydrogen are taken
into consideration
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with Flame Ionization Detector (GC-FID). Sediment samples for gas/liquid
chromatography and stable isotope analysis were frozen, freeze-dried and homo-
genized then extracted using accelerated solvent extraction (ACE 200). Extracts
were subsequently analyzed using GC/FID, GC/MS, a Perkin-Elmer Model LS 50B
fluorometer, and Finnigan MAT 252 isotope mass spectrometry as detailed else-
where43. On the basis of TSF and UCM concentration thresholds described pre-
viously13, core segments from E26 and E29 were qualified and core segments
from E44 were disqualified for unambiguous occurrence of thermogenic liquid
hydrocarbons. Additionally, interstitial hydrocarbon gases were observed in the
core segments of E29. Samples from the surface 0–20 cm interval from these three
cores were further analyzed as described below.

Porewater geochemistry. Porewater sulfate and chloride concentrations were
measured in a Dionex ICS-5000 reagent-free ion chromatography system (Thermo
Scientific, CA, USA) equipped with an anion-exchange column (Dionex IonPac
AS22; 4 × 250 mm; Thermo Scientific), an EGC-500 K2CO3 eluent generator
cartridge and a conductivity detector. Organic acids were analyzed in the 0.2 µm
filtered sediment porewater using a Thermo RS3000 HPLC fitted with an Ultimate
3000 UV detector. Separation was achieved over an Aminex HPX-87H organic acid
column (BioRad, USA) under isocratic conditions (0.05 mM H2SO4) at 60 °C with
a run time of 20 min. Organic acids were compared to the retention time of known
standards and the limit of detection for acetate was determined to be 2.5 µM.

Metabolomic analysis. For the analysis of metabolites, sediment was centrifuged at
21,100 × g for 10min at room temperature, the supernatant was collected, diluted
1:1 in pure methanol, and filtered through 0.2 µm Teflon syringe filters. Each
sediment was subsampled five times to assess technical variability across the sample.
Metabolites present in the extracts were separated using ultra high-performance
liquid chromatography (UHPLC) performed using a gradient of 20mM ammonium
formate at pH 3.0 in water (solvent A) and 0.1% formic acid (% v/v) in acetonitrile
(solvent B) in conjunction with a SyncronisTM HILIC LC column (100 mm× 2.1
mm× 2.1 µm; Thermo Scientific). High-resolution mass spectral data were acquired
on a Thermo Scientific Q-ExactiveTM HF Hybrid Quadrupole-Orbitrap mass
spectrometer coupled to an electrospray ionization source. Data were acquired in
negative ion full-scan mode from 50–750m/z at 240,000 resolution with an auto-
matic gain control (AGC) target of 3e6 and a maximum injection time of 200ms.
For MS/MS fragmentation experiments, an isolation window of 1 m/z and an AGC
target of 1e6 was used with a maximum injection time of 100ms. Data were
analyzed in MAVEN44. Metabolites were assigned based on accurate mass and
retention times of observed signals relative to standards (where available). Meta-
bolites classified as being involved in the anaerobic degradation of aliphatic and
aromatic compound pathways45, for which metabolites standards are not readily
available, were assigned using accurate mass alone. The key benzoate and succinate
metabolites were assigned using accurate mass, co-elution and MS/MS fragmenta-
tion patterns. To control for variability in total organic content across the sediment
samples, metabolite data are presented based on their fractional abundance relative
to all observed metabolites (i.e. constant sum normalization) and were visualized
based on their log fractional abundance46.

DNA extraction and sequencing. For the three sediment samples, DNA was
extracted from 10 g of sediment using the PowerMax Soil DNA Isolation Kit
(12988-10, QIAGEN) according to the manufacturer’s protocol with minor mod-
ifications for the step of homogenization and cell lysis, i.e., cells were lysed in
PowerMax Bead Solution tubes for 45 s at 5.5 m s−1 using a Bead Ruptor 24
(OMNI International). DNA concentrations were assessed using a Qubit 2.0
fluorometer (Thermo Fisher Scientific, Canada). Metagenomic library preparation
and DNA sequencing was conducted at the Center for Health Genomics and
Informatics in the Cumming School of Medicine, University of Calgary. DNA
fragment libraries were prepared by shearing genomic DNA using a Covaris
sonicator and the NEBNext Ultra II DNA library preparation kit (New England
BioLabs). DNA was sequenced on a ~40 Gb (i.e. 130 M reads) mid-output NextSeq
500 System (Illumina Inc.) 300 cycle (2 × 150 bp) sequencing run.

To provide a high-resolution microbial community profile, as well as
quantitative insights into microbial community diversity, the three samples were
also subjected to 16S rRNA gene amplicon sequencing on a MiSeq benchtop
sequencer (Illumina Inc.). DNA was extracted from separate aliquots of the same
sediment samples using the DNeasy PowerLyzer PowerSoil kit (MO BIO
Laboratories, a Qiagen Company, Carlsbad, CA, USA) and used as the template for
different PCR reactions. The v3–4 region of the bacterial 16S rRNA gene and the
v4–5 region of the archaeal 16S rRNA gene were amplified using the primer pairs
SD-Bact-0341-bS17/SD-Bact-0785-aA21 and SD-Arch-0519-aS15/SD-Arch-0911-
aA20, respectively47 on a ~15 Gb 600-cycle (2 × 300 bp) sequencing run.

Metagenomic assembly and binning. Raw reads were quality-controlled by (1)
clipping off primers and adapters and (2) filtering out artifacts and low-quality
reads as described previously48. Filtered reads were assembled using metaSPAdes
version 3.11.0 49 and short contigs (<500 bp) were removed. Sequence coverage was
determined by mapping filtered reads onto assembled contigs using BBmap version

36 (https://sourceforge.net/projects/bbmap/). Binning of metagenome contigs was
performed using MetaBAT version 2.12.1 (–minContig 1500)50. Contaminated
contigs in the produced bins were further removed based on genomic properties
(GC, tetranucleotide signatures, and coverage) and taxonomic assignments using
RefineM version 0.0.22 51. Resulting bins were further examined for contamination
and completeness using CheckM version 1.0.8 with the lineage-specific workflow16.

Annotation. For MAGs, genes were called by Prodigal (-p meta)52. Metabolic
pathways were predicted against the KEGG GENES database using the Ghost-
KOALA tool53 and against the Pfam, TIGRfam and custom HMM databases
(https://github.com/banfieldlab/metabolic-hmms) using MetaErg (https://
sourceforge.net/projects/metaerg/). The dbCAN web server was used for
carbohydrate-active gene identification (cutoffs: coverage fraction: 0.40; e-value:
1e-18)54. Genes encoding proteases and peptidases were identified using BLASTp
against the MEROPS database release 12.0 (cutoffs: e-value, 1e-20; sequence
identity, 30%)55. Genes involved in anaerobic hydrocarbon degradation were
identified using BLASTp against a custom database (Supplementary Data 5)
(cutoffs: e-value, 1e-20; sequence identity, 30%). Hydrogenases were identified and
classified using a web-based search using the hydrogenase classifier HydDB56.

Full-length 16S rRNA genes were reconstructed from metagenomic reads using
phyloFlash version 3.1 (https://hrgv.github.io/phyloFlash/) together with the
SILVA SSU 132 rRNA database57. Diversity calculations were based on separate
16S rRNA gene amplicon library results13. Functional and taxonomic McrA gpkgs
were used to assess the diversity of methanogens against the metagenomic reads
using GraftM with default parameters58. Genes encoding the catalytic subunits of
hydrogenases, dsrA, acsB, assA, nmsA and bssA were retrieved from metagenomic
reads through diamond BLASTx59 queries against comprehensive custom
databases30,56 (cutoffs: e-value, 1e-10; sequence identity, 70%).

Phylogenetic analyses. For taxonomic classification of each MAG, two methods
were used to produce genome trees that were then used to validate each other. In
the first method the tree was constructed using concatenated proteins of up to
16 syntenic ribosomal protein genes following procedures reported elsewhere60; the
second tree was constructed using concatenated amino acid sequences of up to
43 conserved single-copy genes following procedures described previously61. Both
trees were calculated using FastTree version 2.1.9 (-lg -gamma)62 and resulting
phylogenies were congruent. Reference genomes for relatives were accessed
from NCBI GenBank, including genomes selected from several recent studies
representing the majority of candidate bacterial and archaeal phylogenetic
groups2,51,63,64. The tree in Fig. 2 was inferred based on concatenation of 43
conserved single-copy genes (Supplementary Data 1). Specifically, it was built using
RAxML version 8 65 implemented by the CIPRES Science Gateway66 and it was
called as follows: raxmlHPC-HYBRID -f a -n result -s input -c 25 -N 100 -p 12345
-m PROTCATLG -x 12345. The phylogeny resulting from RAxML is consistent
with the taxonomic classification of MAGs that resulted from FastTree. Interactive
tree of life (iTOL) version 3 67 was used for tree visualization and modification.

For phylogenetic placements of functional genes, sequences were aligned using
the ClustalW algorithm included in MEGA7 68. All positions with less than 95%
site coverage were eliminated. Maximum-likelihood phylogenetic trees were
constructed in MEGA7 and evolutionary distances were computed using the
Poisson correction method. These trees were bootstrapped with 50 replicates.

Thermodynamic calculations. The values of Gibbs free energy of formation for
substances were taken from Madigan et al.69 and Dolfing et al.42. The pH used in
all calculations was 8.0 as reported in a previous thermodynamic study of deep
buried sediments31, partial pressure was 300 atm based on water depths at the three
sites (http://docs.bluerobotics.com/calc/pressure-depth/), and temperature was set
as 4 °C to represent deep-sea conditions. Calculations and corrections based on
actual temperatures, pressure, and concentrations followed accepted protocols for
determining reaction kinetics and thermodynamics70.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
DNA sequences (amplicon sequences, genomes and raw sequence reads) have been
deposited in the NCBI BioProject database with accession codes PRJNA415828 and
PRJNA485648. Individual assembly for metagenome-assembled genomes can also be
found at figshare (https://figshare.com/s/9570b8a8ff818bbb0c8f). Genome sequences
used to determine the phylogeny in Fig. 2 can be found at figshare (https://figshare.com/
s/355963dc21a263e34c1f). All other data supporting the findings of this study are
available within the article and its supplementary information files, or from the
corresponding authors upon request.
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