582 research outputs found

    The properties of asteroid (2867) Steins from Spitzer observations and OSIRIS shape reconstruction

    Full text link
    We report on the thermal properties and composition of asteroid (2867) Steins derived from an analysis of new Spitzer Space Telescope (SST) observations performed in March 2008, in addition to previously published SST observations performed in November 2005. We consider the three-dimensional shape model and photometric properties derived from OSIRIS images obtained during the flyby of the Rosetta spacecraft in September 2008, which we combine with a thermal model to properly interpret the observed SST thermal light curve and spectral energy distributions. We obtain a thermal inertia in the range 100\pm50 JK-1m-2s-1/2 and a beaming factor (roughness) in the range 0.7-1.0. We confirm that the infrared emissivity of Steins is consistent with an enstatite composition. The November 2005 SST thermal light curve is most reliably interpreted by assuming inhomogeneities in the thermal properties of the surface, with two different regions of slightly different roughness, as observed on other small bodies, such as the nucleus of comet 9P/Tempel 1. Our results emphasize that the shape model is important to an accurate determination of the thermal inertia and roughness. Finally, we present temperature maps of Steins, as seen by Rosetta during its flyby, and discuss the interpretation of the observations performed by the VIRTIS and MIRO instruments

    Millimetre continuum observations of comet C/2009 P1 (Garradd)

    Full text link
    Little is known about the physical properties of the nuclei of Oort cloud comets. Measuring the thermal emission of a nucleus is one of the few means for deriving its size and constraining some of its thermal properties. We attempted to measure the nucleus size of the Oort cloud comet C/2009 P1 (Garradd). We used the Plateau de Bure Interferometer to measure the millimetric thermal emission of this comet at 157 GHz (1.9 mm) and 266 GHz (1.1 mm). Whereas the observations at 266 GHz were not usable due to bad atmospheric conditions, we derived a 3-sigma upper limit on the comet continuum emission of 0.41 mJy at 157 GHz. Using a thermal model for a spherical nucleus with standard thermal parameters, we found an upper limit of 5.6 km for the radius. The dust contribution to our signal is estimated to be negligible. Given the water production rates measured for this comet and our upper limit, we estimated that Garradd was very active, with an active fraction of its nucleus larger than 50%.Comment: Accepted for publication in Astronomy & Astrophysics. 5 pages, 2 figure

    Reconstructed Ancestral Enzymes Impose a Fitness Cost upon Modern Bacteria Despite Exhibiting Favourable Biochemical Properties

    Get PDF
    Ancestral sequence reconstruction has been widely used to study historical enzyme evolution, both from biochemical and cellular perspectives. Two properties of reconstructed ancestral proteins/enzymes are commonly reported—high thermostability and high catalytic activity—compared with their contemporaries. Increased protein stability is associated with lower aggregation rates, higher soluble protein abundance and a greater capacity to evolve, and therefore, these proteins could be considered “superior” to their contemporary counterparts. In this study, we investigate the relationship between the favourable in vitro biochemical properties of reconstructed ancestral enzymes and the organismal fitness they confer in vivo. We have previously reconstructed several ancestors of the enzyme LeuB, which is essential for leucine biosynthesis. Our initial fitness experiments revealed that overexpression of ANC4, a reconstructed LeuB that exhibits high stability and activity, was only able to partially rescue the growth of a ΔleuB strain, and that a strain complemented with this enzyme was outcompeted by strains carrying one of its descendants. When we expanded our study to include five reconstructed LeuBs and one contemporary, we found that neither in vitro protein stability nor the catalytic rate was correlated with fitness. Instead, fitness showed a strong, negative correlation with estimated evolutionary age (based on phylogenetic relationships). Our findings suggest that, for reconstructed ancestral enzymes, superior in vitro properties do not translate into organismal fitness in vivo. The molecular basis of the relationship between fitness and the inferred age of ancestral LeuB enzymes is unknown, but may be related to the reconstruction process. We also hypothesise that the ancestral enzymes may be incompatible with the other, contemporary enzymes of the metabolic network.France. Agence nationale de la recherch

    Spitzer Space Telescope Observations of the Nucleus of Comet 103P/Hartley 2

    Get PDF
    We have used the Spitzer Space Telescope InfraRed Spectrograph (IRS) 22-ÎŒm peakup array to observe thermal emission from the nucleus and trail of comet 103P/Hartley 2, the target of NASA’s Deep Impact Extended Investigation (DIXI). The comet was observed on UT 2008 August 12 and 13, while 5.5 AU from the Sun. We obtained two 200 frame sets of photometric imaging over a 2.7 hr period. To within the errors of the measurement, we find no detection of any temporal variation between the two images. The comet showed extended emission beyond a point source in the form of a faint trail directed along the comet’s antivelocity vector. After modeling and removing the trail emission, a NEATM model for the nuclear emission with beaming parameter of 0.95 ± 0.20 indicates a small effective radius for the nucleus of 0.57 ± 0.08 km and low geometric albedo 0.028 ± 0.009 (1σ). With this nucleus size and a water production rate of 3 × 10^(28) molecules s^(-1) at perihelion, we estimate that ~100% of the surface area is actively emitting volatile material at perihelion. Reports of emission activity out to ~5 AU support our finding of a highly active nuclear surface. Compared to Deep Impact’s first target, comet 9P/Tempel 1, Hartley 2’s nucleus is one-fifth as wide (and about one-hundredth the mass) while producing a similar amount of outgassing at perihelion with about 13 times the active surface fraction. Unlike Tempel 1, comet Hartley 2 should be highly susceptible to jet driven spin-up torques, and so could be rotating at a much higher frequency. Since the amplitude of nongravitational forces are surprisingly similar for both comets, close to the ensemble average for ecliptic comets, we conclude that comet Hartley 2 must have a much more isotropic pattern of time-averaged outgassing from its nuclear surface. Barring a catastrophic breakup or major fragmentation event, the comet should be able to survive up to another 100 apparitions (~700 yr) at its current rate of mass loss

    Water Ice and Dust in the Innermost Coma of Comet 103P/Hartley 2

    Full text link
    On November 4th, 2010, the Deep Impact eXtended Investigation (DIXI) successfully encountered comet 103P/Hartley 2, when it was at a heliocentric distance of 1.06 AU. Spatially resolved near-IR spectra of comet Hartley 2 were acquired in the 1.05-4.83 micron wavelength range using the HRI-IR spectrometer. We present spectral maps of the inner ~10 kilometers of the coma collected 7 minutes and 23 minutes after closest approach. The extracted reflectance spectra include well-defined absorption bands near 1.5, 2.0, and 3.0 micron consistent in position, bandwidth, and shape with the presence of water ice grains. Using Hapke's radiative transfer model, we characterize the type of mixing (areal vs. intimate), relative abundance, grain size, and spatial distribution of water ice and refractories. Our modeling suggests that the dust, which dominates the innermost coma of Hartley 2 and is at a temperature of 300K, is thermally and physically decoupled from the fine-grained water ice particles, which are on the order of 1 micron in size. The strong correlation between the water ice, dust, and CO2 spatial distribution supports the concept that CO2 gas drags the water ice and dust grains from the nucleus. Once in the coma, the water ice begins subliming while the dust is in a constant outflow. The derived water ice scale-length is compatible with the lifetimes expected for 1-micron pure water ice grains at 1 AU, if velocities are near 0.5 m/s. Such velocities, about three order of magnitudes lower than the expansion velocities expected for isolated 1-micron water ice particles [Hanner, 1981; Whipple, 1951], suggest that the observed water ice grains are likely aggregates.Comment: 51 pages, 12 figures, accepted for publication in Icaru

    Earth-based detection of the millimetric thermal emission of the nucleus of comet 8P/Tuttle

    Full text link
    Little is known about the physical properties of cometary nuclei. Apart from space mission targets, measuring the thermal emission of a nucleus is one of the few means to derive its size, independently of its albedo, and to constrain some of its thermal properties. This emission is difficult to detect from Earth but space telescopes (Infrared Space Observatory, Spitzer Space Telescope, Herschel Space Observatory) allow reliable measurements in the infrared and the sub-millimetre domains. We aim at better characterizing the thermal properties of the nucleus of comet 8P/Tuttle using multi-wavelentgh space- and ground-based observations, in the visible, infrared, and millimetre range. We used the Plateau de Bure Interferometer to measure the millimetre thermal emission of comet 8P/Tuttle at 240 GHz (1.25 mm) and analysed the observations with the shape model derived from Hubble Space Telescope observations and the nucleus size derived from Spitzer Space Telescope observations. We report on the first detection of the millimetre thermal emission of a cometary nucleus since comet C/1995 O1 Hale-Bopp in 1997. Using the two contact spheres shape model derived from Hubble Space Telescope observations, we constrained the thermal properties of the nucleus. Our millimetre observations are best match with: i) a thermal inertia lower than ~10 J K-1 m-2 s-1/2, ii) an emissivity lower than 0.8, indicating a non-negligible contribution of the colder sub-surface layers to the outcoming millimetre flux.Comment: 7 pages. Accepted for publication in Astronomy & Astrophysic

    Activity distribution of comet 67P/Churyumov-Gerasimenko from combined measurements of non-gravitational forces and torques

    Get PDF
    Aims. Understanding the activity is vital for deciphering the structure, formation, and evolution of comets. We investigate models of cometary activity by comparing them to the dynamics of 67P/Churyumov-Gerasimenko. Methods. We matched simple thermal models of water activity to the combined Rosetta datasets by fitting to the total outgassing rate and four components of the outgassing induced non-gravitational force and torque, with a final manual adjustment of the model parameters to additionally match the other two torque components. We parametrised the thermal model in terms of a distribution of relative activity over the surface of the comet, and attempted to link this to different terrain types. We also tested a more advanced thermal model based on a pebble structure. Results. We confirm a hemispherical dichotomy and non-linear water outgassing response to insolation. The southern hemisphere of the comet and consolidated terrain show enhanced activity relative to the northern hemisphere and dust-covered, unconsolidated terrain types, especially at perihelion. We further find that the non-gravitational torque is especially sensitive to the activity distribution, and to fit the pole-axis orientation in particular, activity must be concentrated (in excess of the already high activity in the southern hemisphere and consolidated terrain) around the south pole and on the body and neck of the comet over its head. This is the case for both the simple thermal model and the pebble-based model. Overall, our results show that water activity cannot be matched by a simple model of sublimating surface ice driven by the insolation alone, regardless of the surface distribution, and that both local spatial and temporal variations are needed to fit the data. Conclusions. Fully reconciling the Rosetta outgassing, torque, and acceleration data requires a thermal model that includes both diurnal and seasonal effects and also structure with depth (dust layers or ice within pebbles). This shows that cometary activity is complex. Nonetheless, non-gravitational dynamics provides a useful tool for distinguishing between different thermophysical models and aids our understanding

    Spitzer observations of the asteroid-comet transition object and potential spacecraft target 107P (4015) Wilson-Harrington

    Get PDF
    Context. Near-Earth asteroid-comet transition object 107P/ (4015) Wilson-Harrington is a possible target of the joint European Space Agency (ESA) and Japanese Aerospace Exploration Agency (JAXA) Marco Polo sample return mission. Physical studies of this object are relevant to this mission, and also to understanding its asteroidal or cometary nature. Aims. Our aim is to obtain significant new constraints on the surface thermal properties of this object. Methods. We present mid-infrared photometry in two filters (16 and 22 microns) obtained with NASA's Spitzer Space Telescope on February 12, 2007, and results from the application of the Near Earth Asteroid Thermal Model (NEATM).We obtained high S/N in two mid-IR bands allowing accurate measurements of its thermal emission. Results. We obtain a well constrained beaming parameter (eta = 1.39 +/- 0.26) and obtain a diameter and geometric albedo of D = 3.46 +/- 0.32 km, and pV = 0.059 +/- 0.011. We also obtain similar results when we apply this best-fitting thermal model to single-band mid-IR photometry reported by Campins et al. (1995), Kraemer et al. (2005) and Reach et al. (2007). Conclusions. The albedo of 4015 Wilson-Harrington is low, consistent with those of comet nuclei and primitive C-, P-, D-type asteorids. We establish a rough lower limit for the thermal inertia of W-H of 60 Jm^-2s^(-0.5)K^-1 when it is at r=1AU, which is slightly over the limit of 30 Jm^-2s^(-0.5)K-1 derived by Groussin et al. (2009) for the thermal inertia of the nucleus of comet 22P/Kopff.Comment: 4 pages, 1 figure and 3 tables. Paper accepted for publicatio

    Exploring the surface properties of Transneptunian Objects and Centaurs with polarimetric FORS1/VLT observations

    Full text link
    Polarization is a powerful remote-sensing method to investigate solar system bodies. It is an especially sensitive diagnostic tool to reveal physical properties of the bodies whose observational characteristics are governed by small scatterers (dust, regolith surfaces). For these objects, at small phase angles, a negative polarization is observed, i.e., the electric vector E oscillates predominantly in the scattering plane, contrary to what is typical for rather smooth homogeneous surfaces. The behavior of negative polarization with phase angle depends on the size, composition and packing of the scatterers. These characteristics can be unveiled by modelling the light scattering by the dust or regolith in terms of the coherent backscattering mechanism. We have investigated the surface properties of TNOs and Centaurs by means of polarimetric observations with FORS1 of the ESO VLT. TNOs Ixion and Quaoar, and Centaur Chiron show a negative polarization surge. The Centaur Chiron has the deepest polarization minimum (-1.5 - 1.4%). The two TNOs show differing polarization curves: for Ixion, the negative polarization increases rapidly with phase; for Quaoar, the polarization is relatively small (~ -0.6%), and nearly constant at the observed phase angles. For all three objects, modelling results suggest that the surface contains an areal mixture of at least two components with different single-scatterer albedos and photon mean-free paths.Comment: 11 pages, 7 postscript figures, accepted by A&A; astro-ph abstract has been replaced with a more complete on
    • 

    corecore