281 research outputs found

    Venture capital investments during Covid-19: evidence from the U.S. market

    Get PDF
    This paper studies the impact of Covid-19on the Venture Capital industry in the United States. Using a sample of 8,802 funding rounds, different univariate analyses and multiple regressions were conducted. The number of investments was not significantly affected, while companies received on average a higher round amount compared to the pre-pandemic period. This effect is mainly driven by later stage investments, leading to the conclusion that financing stages are impacted differently. Finally, the results show that during the crisis, lead Venture Capitalists tend to invest more in early stage companies operating in their core sector within first rounds

    automatic shape optimization of structural components with manufacturing constraints

    Get PDF
    Abstract Among optimization procedures, mesh morphing gained a relevant position: it proved to be a suitable tool in obtaining weight and stress concentration reduction, without the need to iterate the numerical model generation. Shape modification through mesh morphing can be performed in an automatic fashion adopting two approaches: defining parameters which will describe the modified shape or exploiting results coming from numerical analyses. With this second approach, it is possible to achieve a very high automation grade: stress values retrieved on component surfaces can be successfully employed to drive the shape modification of the component itself. This 'driven-by-numerical-results' automatic approach can lead to complex optimized shapes, which can be easily achieved with modern additive manufacturing processes, but not adopting traditional manufacturing processes. In the present work a method to include manufacturing constraints in a shape optimization workflow is presented and applied to different structural optimization cases, in order to demonstrate how even manufacturing based on traditional processes can take advantage of automatic shape optimization of structural components

    Intrinsic charm in a matched general-mass scheme

    Get PDF
    The FONLL general-mass variable-flavour number scheme provides a framework for the matching of a calculation in which a heavy quark is treated as a massless parton to one in which the mass dependence is retained throughout. We describe how the usual formulation of FONLL can be extended in such a way that the heavy quark parton distribution functions are freely parameterized at some initial scale, rather than being generated entirely perturbatively. We specifically consider the case of deep-inelastic scattering, in view of applications to PDF determination, and the possible impact of a fitted charm quark distribution on F2cF_2^c is assessed.Comment: 16 pages, 5 figures. Final version, to be published in Physics Letters B. Typo in eq 13 corrected, minor clarifications adde

    A simple integrated single-atom detector

    Full text link
    We present a reliable and robust integrated fluorescence detector capable of detecting single atoms. The detector consists of a tapered lensed single-mode fiber for precise delivery of excitation light and a multimode fiber to collect the fluorescence. Both are mounted in lithographically defined SU-8 holding structures on an atom chip. Rb87 atoms propagating freely in a magnetic guide are detected with an efficiency of up to 66%, and a signal-to-noise ratio in excess of 100 is obtained for short integration times.Comment: 3 pages, 3 figure

    Fast interactive CFD evaluation of hemodynamics assisted by RBF mesh morphing and reduced order models: the case of aTAA modelling

    Get PDF
    AbstractThe medical digital twin is emerging as a viable opportunity to provide patient-specific information useful for treatment, prevention and surgical planning. A bottleneck toward its effective use when computational fluid dynamics (CFD) techniques and tools are adopted for the high fidelity prediction of blood flow, is the significant computing cost required. Reduced order models (ROM) looks to be a promising solution for facing the aforementioned limit. In fact, once ROM data processing is accomplished, the consumption stage can be performed outside the computer-aided engineering software adopted for simulation and, in addition, it could be also implemented on interactive software visualization interfaces that are commonly employed in the medical context. In this paper we demonstrate the soundness of such a concept by numerically investigating the effect of the bulge shape for the ascending thoracic aorta aneurysm case. Radial basis functions (RBF) based mesh morphing enables the implementation of a parametric shape, which is used to build up the ROM framework and data. The final result is an inspection tool capable to visualize, interactively and almost in real-time, the effect of shape parameters on the entire flow field. The approach is first verified considering a morphing action representing the progression from an average healthy patient to an average aneurismatic one (Capellini et al. in Proceedings VII Meeting Italian Chapter of the European Society of Biomechanics (ESB-ITA 2017), 2017; Capellini et al. in J. Biomech. Eng. 140(11):111007-1–111007-10, 2018). Then, a set of shape parameters, suitable to consistently represent a widespread number of possible bulge configurations, are defined and accordingly generated. The concept is showcased taking into account the steady flow field at systolic peak conditions, using ANSYS®Fluent®and its ROM environment for CFD and ROM calculations respectively, and the RBF MorphTM software for shape parametrization

    To be or not to be the odd one out - Allele-specific transcription in pentaploid dogroses (Rosa L. sect. Caninae (DC.) Ser)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple hybridization events gave rise to pentaploid dogroses which can reproduce sexually despite their uneven ploidy level by the unique canina meiosis. Two homologous chromosome sets are involved in bivalent formation and are transmitted by the haploid pollen grains and the tetraploid egg cells. In addition the egg cells contain three sets of univalent chromosomes which are excluded from recombination. In this study we investigated whether differential behavior of chromosomes as bivalents or univalents is reflected by sequence divergence or transcription intensity between homeologous alleles of two single copy genes (<it>LEAFY</it>, <it>cGAPDH</it>) and one ribosomal DNA locus (<it>nrITS</it>).</p> <p>Results</p> <p>We detected a maximum number of four different alleles of all investigated loci in pentaploid dogroses and identified the respective allele with two copies, which is presumably located on bivalent forming chromosomes. For the alleles of the ribosomal DNA locus and <it>cGAPDH </it>only slight, if any, differential transcription was determined, whereas the <it>LEAFY </it>alleles with one copy were found to be significantly stronger expressed than the <it>LEAFY </it>allele with two copies. Moreover, we found for the three marker genes that all alleles have been under similar regimes of purifying selection.</p> <p>Conclusions</p> <p>Analyses of both molecular sequence evolution and expression patterns did not support the hypothesis that unique alleles probably located on non-recombining chromosomes are less functional than duplicate alleles presumably located on recombining chromosomes.</p

    MicroRNA 19a replacement partially rescues fin and cardiac defects in zebrafish model of Holt Oram syndrome

    Get PDF
    Holt-Oram Syndrome (HOS) is an autosomal dominant heart-hand syndrome caused by mutations in the TBX5 gene, a transcription factor capable of regulating hundreds of cardiac-specific genes through complex transcriptional networks. Here we show that, in zebrafish, modulation of a single miRNA is sufficient to rescue the morphogenetic defects generated by HOS. The analysis of miRNA-seq profiling revealed a decreased expression of miR-19a in Tbx5-depleted zebrafish embryos compared to the wild type. We revealed that the transcription of the miR-17-92 cluster, which harbors miR-19a, is induced by Tbx5 and that a defined dosage of miR-19a is essential for the correct development of the heart. Importantly, we highlighted that miR-19a replacement is able to rescue cardiac and pectoral fin defects and to increase the viability of HOS zebrafish embryos. We further observed that miR-19a replacement shifts the global gene expression profile of HOS-like zebrafish embryos towards the wild type condition, confirming the ability of miR-19a to rescue the Tbx5 phenotype. In conclusion our data demonstrate the importance of Tbx5/miR-19a regulatory circuit in heart development and provide a proof of principle that morphogenetic defects associated with HOS can be rescued by transient miRNA modulation

    DNA-binding properties of the MADS-domain transcription factor SEPALLATA3 and mutant variants characterized by SELEX-seq

    Get PDF
    Key message We studied the DNA-binding profile of the MADS-domain transcription factor SEPALLATA3 and mutant variants by SELEX-seq. DNA-binding characteristics of SEPALLATA3 mutant proteins lead us to propose a novel DNA-binding mode. MIKC-type MADS-domain proteins, which function as essential transcription factors in plant development, bind as dimers to a 10-base-pair AT-rich motif termed CArG-box. However, this consensus motif cannot fully explain how the abundant family members in flowering plants can bind different target genes in specific ways. The aim of this study was to better understand the DNA-binding specificity of MADS-domain transcription factors. Also, we wanted to understand the role of a highly conserved arginine residue for binding specificity of the MADS-domain transcription factor family. Here, we studied the DNA-binding profile of the floral homeotic MADS-domain protein SEPALLATA3 by performing SELEX followed by high-throughput sequencing (SELEX-seq). We found a diverse set of bound sequences and could estimate the in vitro binding affinities of SEPALLATA3 to a huge number of different sequences. We found evidence for the preference of AT-rich motifs as flanking sequences. Whereas different CArG-boxes can act as SEPALLATA3 binding sites, our findings suggest that the preferred flanking motifs are almost always the same and thus mostly independent of the identity of the central CArG-box motif. Analysis of SEPALLATA3 proteins with a single amino acid substitution at position 3 of the DNA-binding MADS-domain further revealed that the conserved arginine residue, which has been shown to be involved in a shape readout mechanism, is especially important for the recognition of nucleotides at positions 3 and 8 of the CArG-box motif. This leads us to propose a novel DNA-binding mode for SEPALLATA3, which is different from that of other MADS-domain proteins known.Peer reviewe
    corecore