128 research outputs found

    Sports Activity After Short-Stem Hip Arthroplasty

    Get PDF
    Background: No data are available about the sports activity of patients with bone-conserving short-stem hip implants. Hypothesis: Patients can return to a good level of sports activity after implantation of a short-stem hip implant. Study Design: Case series; Level of evidence, 4. Methods: The sports activity level of 68 patients (76 hips) after short-stem hip arthroplasty was assessed for a minimum of 2 years after implantation. In addition to the clinical examination, a detailed evaluation of the patients’ sports pattern was obtained. Furthermore, the results were analyzed with regard to gender (female and male) and age (55 years). Results: After a mean of 2.7 years, patients showed a Harris Hip Score (HHS) of 93.6, a Western Ontario and McMaster Universities Arthritis Index (WOMAC) score of 9.5, and a University of California, Los Angeles (UCLA) activity score of 7.6, with each individual participating on average in 3.5 different disciplines after surgery compared with 3.9 before surgery. High-impact activities decreased significantly postoperatively, whereas low-impact activities increased significantly. The duration of the sports activities remained stable, while the frequency actually increased. In contrast, men participated preoperatively in more sports than women (4.3 men vs 3.3 women). However, because of a pronounced decrease in high-impact activities by men, both genders participated in an equal number of sports postoperatively (3.5 men vs 3.5 women). Finally, 45% (n = 31) reported at least one activity that they missed. Most of them were disciplines with an intermediate- or high-impact level. Conclusion: Patients with a short-stem hip implant can return to a good level of activity postoperatively. Participation in sports almost reached similar levels as preoperatively but with a shift from high- to low-impact activities. This seems desirable from a surgeon’s point of view but should also be communicated to the patient before hip replacemen

    Wintertime grassland dynamics may influence belowground biomass under climate change: a model analysis

    Get PDF
    Rising temperatures and changes in snow cover, as can be expected under a warmer global climate, may have large impacts on mountain grassland productivity limited by cold and long winters. Here, we combined two existing models, the multi-layer atmosphere-SOiL-VEGetation model (SOLVEG) and the BASic GRAssland model (BASGRA), which accounts for snow, freeze–thaw events, grass growth, and soil carbon balance. The model was applied to simulate the responses of managed grasslands to anomalously warm winter conditions. The grass growth module considered key ecological processes under a cold environment, such as leaf formation, elongation and death, tillering, carbon allocation, and cold acclimation, in terms of photosynthetic activity. Input parameters were derived for two pre-Alpine grassland sites in Germany, for which the model was run using 3 years of data that included a winter with an exceptionally small amount of snow. The model reproduced the temporal variability of observed daily mean heat fluxes, soil temperatures, and snow depth throughout the study period. High physiological activity levels during the extremely warm winter led to a simulated CO2 uptake of 100 gC m−2, which was mainly allocated into the belowground biomass and only to a minor extent used for additional plant growth during early spring. If these temporary dynamics are representative of long-term changes, this process, which is so far largely unaccounted for in scenario analysis using global terrestrial biosphere models, may lead to carbon accumulation in the soil and/or carbon loss from the soil as a response to global warming

    Fatty acid composition of Turbatrix aceti and its use in feeding regimes of Coregonus maraena (Bloch, 1779): is it really a suitable alternative to Artemia nauplii?

    Get PDF
    By incorporating the free-swimming nematode Turbatrix aceti into early feeding regimes of the European whitefish Coregonus maraena, the suitability of this nematode species was investigated as an alternative to Artemia nauplii. During a 14-day feeding trial in a total of 25 aquaria each 1.7 L (each treatment n = 5, 255 larvae/tank) T. aceti was used either as the sole live food or in combination with Artemia nauplii or microdiet to determine the effect of T. aceti on growth performance and survival rate of C. maraena. By analysing the fatty acid composition of T. aceti prior to and after enrichment with INVE spressoŸ it was investigated whether the amount of n3-polyunsaturated fatty acids (n3-PUFA) in T. aceti could be further enhanced. Supplementation of Artemia nauplii with T. aceti increased growth significantly within the first 5 days of rearing in comparison to the non-supplemented food treatments (14.39 ± 0.15 mm compared to 13.44 ± 0.18 mm; mean ± SE). However, growth and survival of juvenile C. maraena on nematode-supplemented Artemia nauplii did not differ significantly from non-supplemented Artemia nauplii at the end of the 14-day rearing period (15.22 ± 0.15 mm compared to 14.86 ± 0.24 mm). All feeding treatments containing Artemia nauplii showed significantly higher growth and lower mortality at the end of the experiment in comparison to diets containing only the microdiet or T. aceti or a combination thereof. The overall low performance of T. aceti alone can most likely be explained by an insufficient capacity of C. maraena to digest this nematode species efficiently. Enrichment with INVE spressoŸ successfully increased the proportion of DHA in the T. aceti tissue. The results reveal that T. aceti cannot be considered a full alternative to Artemia nauplii, at least not in the rearing of C. maraena, but might be a useful vector of essential fatty acids within the early rearing period of this and potentially other fish species when provided as live food along with Artemia nauplii

    Asymptotic normality for random simplices and convex bodies in high dimensions

    Get PDF
    Central limit theorems for the log-volume of a class of random convex bodies in Rn \mathbb{R}^n are obtained in the high-dimensional regime, that is, as n→∞ n\to \infty . In particular, the case of random simplices pinned at the origin and simplices where all vertices are generated at random is investigated. The coordinates of the generating vectors are assumed to be independent and identically distributed with subexponential tails. In addition, asymptotic normality is also established for random convex bodies (including random simplices pinned at the origin) when the spanning vectors are distributed according to a radially symmetric probability measure on the n n-dimensional ℓp \ell _p-ball. In particular, this includes the cone and the uniform probability measure

    Environmental change impacts on the C- and N-cycle of European forests: a model comparison study [Discussion paper]

    Get PDF
    Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon source was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth

    Microenvironment‐induced restoration of cohesive growth associated with focal activation of P ‐cadherin expression in lobular breast carcinoma metastatic to the colon

    Get PDF
    Invasive lobular carcinoma (ILC) is a special breast cancer type characterized by noncohesive growth and E‐cadherin loss. Focal activation of P‐cadherin expression in tumor cells that are deficient for E‐cadherin occurs in a subset of ILCs. Switching from an E‐cadherin deficient to P‐cadherin proficient status (EPS) partially restores cell–cell adhesion leading to the formation of cohesive tubular elements. It is unknown what conditions control EPS. Here, we report on EPS in ILC metastases in the large bowel. We reviewed endoscopic colon biopsies and colectomy specimens from a 52‐year‐old female (index patient) and of 18 additional patients (reference series) diagnosed with metastatic ILC in the colon. EPS was assessed by immunohistochemistry for E‐cadherin and P‐cadherin. CDH1 /E‐cadherin mutations were determined by next‐generation sequencing. The index patient's colectomy showed transmural metastatic ILC harboring a CDH1 /E‐cadherin p.Q610* mutation. ILC cells displayed different growth patterns in different anatomic layers of the colon wall. In the tunica muscularis propria and the tela submucosa, ILC cells featured noncohesive growth and were E‐cadherin‐negative and P‐cadherin‐negative. However, ILC cells invading the mucosa formed cohesive tubular elements in the intercryptal stroma of the lamina propria mucosae. Inter‐cryptal ILC cells switched to a P‐cadherin‐positive phenotype in this microenvironmental niche. In the reference series, colon mucosa infiltration was evident in 13 of 18 patients, one of which showed intercryptal EPS and conversion to cohesive growth as described in the index patient. The large bowel is a common metastatic site in ILC. In endoscopic colon biopsies, the typical noncohesive growth of ILC may be concealed by microenvironment‐induced EPS and conversion to cohesive growth

    Nutritional situation for larval Atlantic herring (Clupea harengus L.) in two nursery areas in thewestern Baltic Sea

    Get PDF
    The Greifswalder Bodden (GWB) is considered to be the most important spawning and nursery area for the western Baltic spring-spawning herring. However, the biotic and abiotic reasons for this are still unclear. Consequently, we investigated larval growth conditions in the GWB and in the Kiel Canal (KC), another nursery and spawning area of Baltic herring. We investigated prey quantity and quality [copepod abundance and essential fatty acid (EFA) concentration] as well as biochemically derived growth rates and fatty acid content of larval herring in spring 2011. A significant correlation between larval growth and larval EFA concentration could be observed in the GWB. The highest growth rates and EFA concentrations in the larval herring coincided with high food quality. Compensating effects of food quality on food quantity and vice versa could be observed in both the GWB and the KC. While larval growth rates in the KC were high early in the season, highest growth rates in the GWB were achieved late in the season. In conclusion, neither area was superior to the other, indicating similar growth conditions for larval herring within the region
    • 

    corecore