98 research outputs found

    Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome.

    Get PDF
    Somatic mutations in the spliceosome gene ZRSR2-located on the X chromosome-are associated with myelodysplastic syndrome (MDS). ZRSR2 is involved in the recognition of 3'-splice site during the early stages of spliceosome assembly; however, its precise role in RNA splicing has remained unclear. Here we characterize ZRSR2 as an essential component of the minor spliceosome (U12 dependent) assembly. shRNA-mediated knockdown of ZRSR2 leads to impaired splicing of the U12-type introns and RNA-sequencing of MDS bone marrow reveals that loss of ZRSR2 activity causes increased mis-splicing. These splicing defects involve retention of the U12-type introns, while splicing of the U2-type introns remain mostly unaffected. ZRSR2-deficient cells also exhibit reduced proliferation potential and distinct alterations in myeloid and erythroid differentiation in vitro. These data identify a specific role for ZRSR2 in RNA splicing and highlight dysregulated splicing of U12-type introns as a characteristic feature of ZRSR2 mutations in MDS

    Engineered reporter phages for detection of Escherichia coli, Enterococcus, and Klebsiella in urine

    Full text link
    The rapid detection and species-level differentiation of bacterial pathogens facilitates antibiotic stewardship and improves disease management. Here, we develop a rapid bacteriophage-based diagnostic assay to detect the most prevalent pathogens causing urinary tract infections: Escherichia coli, Enterococcus spp., and Klebsiella spp. For each uropathogen, two virulent phages were genetically engineered to express a nanoluciferase reporter gene upon host infection. Using 206 patient urine samples, reporter phage-induced bioluminescence was quantified to identify bacteriuria and the assay was benchmarked against conventional urinalysis. Overall, E. coli, Enterococcus spp., and Klebsiella spp. were each detected with high sensitivity (68%, 78%, 87%), specificity (99%, 99%, 99%), and accuracy (90%, 94%, 98%) at a resolution of ≥103^{3} CFU/ml within 5 h. We further demonstrate how bioluminescence in urine can be used to predict phage antibacterial activity, demonstrating the future potential of reporter phages as companion diagnostics that guide patient-phage matching prior to therapeutic phage application

    The Dynamics of Plasma Membrane, Metabolism and Respiration (PM-M-R) in Penicillium ochrochloron CBS 123824 in Response to Different Nutrient Limitations-A Multi-level Approach to Study Organic Acid Excretion in Filamentous Fungi.

    Get PDF
    Filamentous fungi are important cell factories. In contrast, we do not understand well even basic physiological behavior in these organisms. This includes the widespread phenomenon of organic acid excretion. One strong hurdle to fully exploit the metabolic capacity of these organisms is the enormous, highly environment sensitive phenotypic plasticity. In this work we explored organic acid excretion in Penicillium ochrochloron from a new point of view by simultaneously investigating three essential metabolic levels: the plasma membrane H+-ATPase (PM); energy metabolism, in particular adenine and pyridine nucleotides (M); and respiration, in particular the alternative oxidase (R). This was done in strictly standardized chemostat culture with different nutrient limitations (glucose, ammonium, nitrate, and phosphate). These different nutrient limitations led to various quantitative phenotypes (as represented by organic acid excretion, oxygen consumption, glucose consumption, and biomass formation). Glucose-limited grown mycelia were used as the reference point (very low organic acid excretion). Both ammonium and phosphate grown mycelia showed increased organic acid excretion, although the patterns of excreted acids were different. In ammonium-limited grown mycelia amount and activity of the plasma membrane H+-ATPase was increased, nucleotide concentrations were decreased, energy charge (EC) and catabolic reduction charge (CRC) were unchanged and alternative respiration was present but not quantifiable. In phosphate-limited grown mycelia (no data on the H+-ATPase) nucleotide concentrations were still lower, EC was slightly decreased, CRC was distinctly decreased and alternative respiration was present and quantifiable. Main conclusions are: (i) the phenotypic plasticity of filamentous fungi demands adaptation of sample preparation and analytical methods at the phenotype level; (ii) each nutrient condition is unique and its metabolic situation must be considered separately; (iii) organic acid excretion is inversely related to nucleotide concentration (but not EC); (iv) excretion of organic acids is the outcome of a simultaneous adjustment of several metabolic levels to nutrient conditions

    Selective serotonin reuptake inhibitor antidepressant use in first trimester pregnancy and risk of specific congenital anomalies: A European register-based study

    Get PDF
    Evidence of an association between early pregnancy exposure to selective serotonin reuptake inhibitors (SSRI) and congenital heart defects (CHD) has contributed to recommendations to weigh benefits and risks carefully. The objective of this study was to determine the specificity of association between first trimester exposure to SSRIs and specific CHD and other congenital anomalies (CA) associated with SSRI exposure in the literature (signals). A population-based case-malformed control study was conducted in 12 EUROCAT CA registries covering 2.1 million births 1995-2009 including livebirths, fetal deaths from 20 weeks gestation and terminations of pregnancy for fetal anomaly. Babies/fetuses with specific CHD (n = 12,876) and non-CHD signal CA (n = 13,024), were compared with malformed controls whose diagnosed CA have not been associated with SSRI in the literature (n = 17,083). SSRI exposure in first trimester pregnancy was associated with CHD overall (OR adjusted for registry 1.41, 95% CI 1.07-1.86, fluoxetine adjOR 1.43 95% CI 0.85-2.40, paroxetine adjOR 1.53, 95% CI 0.91-2.58) and with severe CHD (adjOR 1.56, 95% CI 1.02-2.39), particularly Tetralogy of Fallot (adjOR 3.16, 95% CI 1.52-6.58) and Ebstein's anomaly (adjOR 8.23, 95% CI 2.92-23.16). Significant associations with SSRI exposure were also found for ano-rectal atresia/stenosis (adjOR 2.46, 95% CI 1.06-5.68), gastroschisis (adjOR 2.42, 95% CI 1.10-5.29), renal dysplasia (adjOR 3.01, 95% CI 1.61-5.61), and clubfoot (adjOR 2.41, 95% CI 1.59-3.65). These data support a teratogenic effect of SSRIs specific to certain anomalies, but cannot exclude confounding by indication or associated factors

    Genome-wide Trans-ethnic Meta-analysis Identifies Seven Genetic Loci Influencing Erythrocyte Traits and a Role for RBPMS in Erythropoiesis

    Get PDF
    Genome-wide association studies (GWASs) have identified loci for erythrocyte traits in primarily European ancestry populations. We conducted GWAS meta-analyses of six erythrocyte traits in 71,638 individuals from European, East Asian, and African ancestries using a Bayesian approach to account for heterogeneity in allelic effects and variation in the structure of linkage disequilibrium between ethnicities. We identified seven loci for erythrocyte traits including a locus (RBPMS/GTF2E2) associated with mean corpuscular hemoglobin and mean corpuscular volume. Statistical fine-mapping at this locus pointed to RBPMS at this locus and excluded nearby GTF2E2. Using zebrafish morpholino to evaluate loss of function, we observed a strong in vivo erythropoietic effect for RBPMS but not for GTF2E2, supporting the statistical fine-mapping at this locus and demonstrating that RBPMS is a regulator of erythropoiesis. Our findings show the utility of trans-ethnic GWASs for discovery and characterization of genetic loci influencing hematologic traits

    An Iodide-mediated Anodic Amide Coupling

    No full text
    The ubiquity of amide bonds, present in natural products and common pharmaceuticals renders this functional group one of the most prevalent in organic chemistry. Despite its importance and a wide variety of existing methods for its formation, the latter still can be a challenge for classical activating reagents such as chloridating agents or carbodiimides. As the spent reagents often cannot be recycled, the development of more sustainable methods is highly desirable. Herein, we report an operationally simple and mild indirect electrochemical protocol to effect the condensation of carboxylic acids with amines, forming a wide variety of carboxamides
    corecore