17 research outputs found
Global CO2 emissions from dry inland waters share common drivers across ecosystems
Many inland waters exhibit complete or partial desiccation, or have vanished due to global change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions from these sediments are too scarce to upscale emissions for global estimates or to understand their fundamental drivers. Here, we present the results of a global survey covering 196 dry inland waters across diverse ecosystem types and climate zones. We show that their CO2 emissions share fundamental drivers and constitute a substantial fraction of the carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and climate zones, with local characteristics explaining much of the variability. Accounting for such emissions increases global estimates of carbon emissions from inland waters by 6% (~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a significant and likely increasing component of the inland waters carbon cycle
Global CO2 emissions from dry inland waters share common drivers across ecosystems
©. This manuscript version is made available under the CC BY 4.0 license http://creativecommons.org/licenses/ccby/4.0/
This document is the Published, version of a Published Work that appeared in final form in [Nature communications]. To access the final edited and published work see [https://doi.org/.1038/s41467-020-15929-y]Many inland waters exhibit complete or partial desiccation, or have vanished due to global
change, exposing sediments to the atmosphere. Yet, data on carbon dioxide (CO2) emissions
from these sediments are too scarce to upscale emissions for global estimates or to
understand their fundamental drivers. Here, we present the results of a global survey covering
196 dry inland waters across diverse ecosystem types and climate zones. We show that
their CO2 emissions share fundamental drivers and constitute a substantial fraction of the
carbon cycled by inland waters. CO2 emissions were consistent across ecosystem types and
climate zones, with local characteristics explaining much of the variability. Accounting for
such emissions increases global estimates of carbon emissions from inland waters by 6%
(~0.12 Pg C y−1). Our results indicate that emissions from dry inland waters represent a
significant and likely increasing component of the inland waters carbon cycle
Outline of Fungi and fungus-like taxa
This article provides an outline of the classification of the kingdom Fungi (including fossil fungi. i.e. dispersed spores, mycelia, sporophores, mycorrhizas). We treat 19 phyla of fungi. These are Aphelidiomycota, Ascomycota, Basidiobolomycota, Basidiomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Entorrhizomycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota. The placement of all fungal genera is provided at the class-, order- and family-level. The described number of species per genus is also given. Notes are provided of taxa for which recent changes or disagreements have been presented. Fungus-like taxa that were traditionally treated as fungi are also incorporated in this outline (i.e. Eumycetozoa, Dictyosteliomycetes, Ceratiomyxomycetes and Myxomycetes). Four new taxa are introduced: Amblyosporida ord. nov. Neopereziida ord. nov. and Ovavesiculida ord. nov. in Rozellomycota, and Protosporangiaceae fam. nov. in Dictyosteliomycetes. Two different classifications (in outline section and in discussion) are provided for Glomeromycota and Leotiomycetes based on recent studies. The phylogenetic reconstruction of a four-gene dataset (18S and 28S rRNA, RPB1, RPB2) of 433 taxa is presented, including all currently described orders of fungi
Automatic high frequency monitoring for improved lake and reservoir management
Recent technological developments have increased the number of variables being monitored in lakes and reservoirs using Automatic High Frequency Monitoring (AHFM). However, design of AHFM systems and posterior data handling and interpretation are currently being developed on a site-by-site and issue-by-issue basis with minimal standardization of protocols or knowledge sharing. As a result, many deployments become short-lived or underutilized, and many new scientific developments that are potentially useful for water management and environmental legislation remain underexplored. This talk bridges scientific uses of AHFM with their applications by providing an overview of the current AHFM capabilities, together with examples of successful applications. We review the use of AHFM for maximizing the provision of ecosystem services supplied by lakes and reservoirs (consumptive and non-consumptive uses, food production, and recreation), and for reporting lake status in the EU Water Framework Directive. We also highlight critical issues to enhance the application of AHFM, and suggest the establishment of appropriate networks to facilitate knowledge sharing and technological transfer between potential users. Finally, we give advice on how modern sensor technology can successfully be applied on a larger scale to the management of lakes and reservoirs, and maximize the ecosystem services they provide
Synergistic growth in bacteria depends on substrate complexity
Both positive and negative interactions among bacteria take place in the environment. We hypothesize that the complexity of the substrate affects the way bacteria interact with greater cooperation in the presence of recalcitrant substrate. We isolated lignocellulolytic bacteria from salt marsh detritus and compared the growth, metabolic activity and enzyme production of pure cultures to those of three-species mixed cultures in lignocellulose and glucose media. Synergistic growth was common in lignocellulose medium containing carboxyl methyl cellulose, xylan and lignin but absent in glucose medium. Bacterial synergism promoted metabolic activity in synergistic mixed cultures but not the maximal growth rate (μ). Bacterial synergism also promoted the production of β-1,4-glucosidase but not the production of cellobiohydrolase or β-1,4-xylosidase. Our results suggest that the chemical complexity of the substrate affects the way bacteria interact. While a complex substrate such as lignocellulose promotes positive interactions and synergistic growth, a labile substrate such as glucose promotes negative interactions and competition. Synergistic interactions among indigenous bacteria are suggested to be important in promoting lignocellulose degradation in the environment