67 research outputs found
Distinguishing multi-partite states by local measurements
We analyze the distinguishability norm on the states of a multi-partite
system, defined by local measurements. Concretely, we show that the norm
associated to a tensor product of sufficiently symmetric measurements is
essentially equivalent to a multi-partite generalisation of the non-commutative
2-norm (aka Hilbert-Schmidt norm): in comparing the two, the constants of
domination depend only on the number of parties but not on the Hilbert spaces
dimensions.
We discuss implications of this result on the corresponding norms for the
class of all measurements implementable by local operations and classical
communication (LOCC), and in particular on the leading order optimality of
multi-party data hiding schemes.Comment: 18 pages, 6 figures, 1 unreferenced referenc
Novel Collective Effects in Integrated Photonics
Superradiance, the enhanced collective emission of energy from a coherent
ensemble of quantum systems, has been typically studied in atomic ensembles. In
this work we study theoretically the enhanced emission of energy from coherent
ensembles of harmonic oscillators. We show that it should be possible to
observe harmonic oscillator superradiance for the first time in waveguide
arrays in integrated photonics. Furthermore, we describe how pairwise
correlations within the ensemble can be measured with this architecture. These
pairwise correlations are an integral part of the phenomenon of superradiance
and have never been observed in experiments to date.Comment: 7 pages, 3 figure
The Landau Pole and decays in the 331 bilepton model
We calculate the decay widths and branching ratios of the extra neutral boson
predicted by the 331 bilepton model in the framework of two
different particle contents. These calculations are performed taken into
account oblique radiative corrections, and Flavor Changing Neutral Currents
(FCNC) under the ansatz of Matsuda as a texture for the quark mass matrices.
Contributions of the order of are obtained in the branching
ratios, and partial widths about one order of magnitude bigger in relation with
other non- and bilepton models are also obtained. A Landau-like pole arise at
3.5 TeV considering the full particle content of the minimal model (MM), where
the exotic sector is considered as a degenerated spectrum at 3 TeV scale. The
Landau pole problem can be avoid at the TeV scales if a new leptonic content
running below the threshold at TeV is implemented as suggested by other
authors.Comment: 20 pages, 5 figures, LaTeX2
Branching ratio and CP asymmetry of decays in the perturbative QCD approach
In this paper, we calculate the decay rate and CP asymmetry of the decay in perturbative QCD approach with Sudakov resummation. Since
none of the quarks in final states is the same as those of the initial
meson, this decay can occur only via annihilation diagrams in the standard
model. Besides the current-current operators, the contributions from the QCD
and electroweak penguin operators are also taken into account. We find that (a)
the branching ratio is about ; (b) the penguin diagrams
dominate the total contribution; and (c) the direct CP asymmetry is small in
size: no more than ; but the mixing-induced CP asymmetry can be as large
as ten percent testable in the near future LHC-b experiments.Comment: 12 pages, 4 figures included, RevTe
Spin fluctuations in nearly magnetic metals from ab-initio dynamical spin susceptibility calculations:application to Pd and Cr95V5
We describe our theoretical formalism and computational scheme for making
ab-initio calculations of the dynamic paramagnetic spin susceptibilities of
metals and alloys at finite temperatures. Its basis is Time-Dependent Density
Functional Theory within an electronic multiple scattering, imaginary time
Green function formalism. Results receive a natural interpretation in terms of
overdamped oscillator systems making them suitable for incorporation into spin
fluctuation theories. For illustration we apply our method to the nearly
ferromagnetic metal Pd and the nearly antiferromagnetic chromium alloy Cr95V5.
We compare and contrast the spin dynamics of these two metals and in each case
identify those fluctuations with relaxation times much longer than typical
electronic `hopping times'Comment: 21 pages, 9 figures. To appear in Physical Review B (July 2000
Density functional theories and self-energy approaches
A purpose-designed microarray platform (Stressgenes, Phase 1) was utilised to investigate the changes in gene expression within the liver of rainbow trout during exposure to a prolonged period of confinement. Tissue and blood samples were collected from trout at intervals up to 648 h after transfer to a standardised confinement stressor, together with matched samples from undisturbed control fish. Plasma ACTH, cortisol, glucose and lactate were analysed to confirm that the neuroendocrine response to confinement was consistent with previous findings and to provide a phenotypic context to assist interpretation of gene expression data. Liver samples for suppression subtractive hybridisation (SSH) library construction were selected from within the experimental groups comprising “early” stress (2–48 h) and “late” stress (96–504 h). In order to reduce redundancy within the four SSH libraries and yield a higher number of unique clones an additional subtraction was carried out. After printing of the arrays a series of 55 hybridisations were executed to cover 6 time points. At 2 h, 6 h, 24 h, 168 h and 504 h 5 individual confined fish and 5 individual control fish were used with control fish only at 0 h. A preliminary list of 314 clones considered differentially regulated over the complete time course was generated by a combination of data analysis approaches and the most significant gene expression changes were found to occur during the 24 h to 168 h time period with a general approach to control levels by 504 h. Few changes in expression were apparent over the first 6 h. The list of genes whose expression was significantly altered comprised predominantly genes belonging to the biological process category (response to stimulus) and one cellular component category (extracellular region) and were dominated by so-called acute phase proteins. Analysis of the gene expression profile in liver tissue during confinement revealed a number of significant clusters. The major patterns comprised genes that were up-regulated at 24 h and beyond, the primary examples being haptoglobin, β-fibrinogen and EST10729. Two representative genes from each of the six k-means clusters were validated by qPCR. Correlations between microarray and qPCR expression patterns were significant for most of the genes tested. qPCR analysis revealed that haptoglobin expression was up-regulated approximately 8-fold at 24 h and over 13-fold by 168 h.This project was part funded by the European Commission (Q5RS-2001-02211), Enterprise Ireland and the Natural Environment Research Council of the United Kingdom
Prospects for e+e- physics at Frascati between the phi and the psi
We present a detailed study, done in the framework of the INFN 2006 Roadmap,
of the prospects for e+e- physics at the Frascati National Laboratories. The
physics case for an e+e- collider running at high luminosity at the phi
resonance energy and also reaching a maximum center of mass energy of 2.5 GeV
is discussed, together with the specific aspects of a very high luminosity
tau-charm factory. Subjects connected to Kaon decay physics are not discussed
here, being part of another INFN Roadmap working group. The significance of the
project and the impact on INFN are also discussed. All the documentation
related to the activities of the working group can be found in
http://www.roma1.infn.it/people/bini/roadmap.html.Comment: INFN Roadmap Report: 86 pages, 25 figures, 9 table
Physics with the KLOE-2 experiment at the upgraded DANE
Investigation at a --factory can shed light on several debated issues
in particle physics. We discuss: i) recent theoretical development and
experimental progress in kaon physics relevant for the Standard Model tests in
the flavor sector, ii) the sensitivity we can reach in probing CPT and Quantum
Mechanics from time evolution of entangled kaon states, iii) the interest for
improving on the present measurements of non-leptonic and radiative decays of
kaons and eta/eta mesons, iv) the contribution to understand the
nature of light scalar mesons, and v) the opportunity to search for narrow
di-lepton resonances suggested by recent models proposing a hidden dark-matter
sector. We also report on the physics in the continuum with the
measurements of (multi)hadronic cross sections and the study of gamma gamma
processes.Comment: 60 pages, 41 figures; added affiliation for one of the authors; added
reference to section
Researching COVID to enhance recovery (RECOVER) pregnancy study: Rationale, objectives and design
Importance Pregnancy induces unique physiologic changes to the immune response and hormonal changes leading to plausible differences in the risk of developing post-acute sequelae of SARS-CoV-2 (PASC), or Long COVID. Exposure to SARS-CoV-2 during pregnancy may also have long-term ramifications for exposed offspring, and it is critical to evaluate the health outcomes of exposed children. The National Institutes of Health (NIH) Researching COVID to Enhance Recovery (RECOVER) Multi-site Observational Study of PASC aims to evaluate the long-term sequelae of SARS-CoV-2 infection in various populations. RECOVER-Pregnancy was designed specifically to address long-term outcomes in maternal-child dyads. Methods RECOVER-Pregnancy cohort is a combined prospective and retrospective cohort that proposes to enroll 2,300 individuals with a pregnancy during the COVID-19 pandemic and their offspring exposed and unexposed in utero, including single and multiple gestations. Enrollment will occur both in person at 27 sites through the Eunice Kennedy Shriver National Institutes of Health Maternal-Fetal Medicine Units Network and remotely through national recruitment by the study team at the University of California San Francisco (UCSF). Adults with and without SARS-CoV-2 infection during pregnancy are eligible for enrollment in the pregnancy cohort and will follow the protocol for RECOVER-Adult including validated screening tools, laboratory analyses and symptom questionnaires followed by more in-depth phenotyping of PASC on a subset of the overall cohort. Offspring exposed and unexposed in utero to SARS-CoV-2 maternal infection will undergo screening tests for neurodevelopment and other health outcomes at 12, 18, 24, 36 and 48 months of age. Blood specimens will be collected at 24 months of age for SARS-CoV-2 antibody testing, storage and anticipated later analyses proposed by RECOVER and other investigators. Discussion RECOVER-Pregnancy will address whether having SARS-CoV-2 during pregnancy modifies the risk factors, prevalence, and phenotype of PASC. The pregnancy cohort will also establish whether there are increased risks of adverse long-term outcomes among children exposed in utero
- …