745 research outputs found
Deconfinement Transition for Quarks on a Line
We examine the statistical mechanics of a 1-dimensional gas of both adjoint
and fundamental representation quarks which interact with each other through
1+1-dimensional U(N) gauge fields. Using large-N expansion we show that, when
the density of fundamental quarks is small, there is a first order phase
transition at a critical temperature and adjoint quark density which can be
interpreted as deconfinement. When the fundamental quark density is comparable
to the adjoint quark density, the phase transition becomes a third order one.
We formulate a way to distinguish the phases by considering the expectation
values of high winding number Polyakov loop operators.Comment: Reported problems with figures fixed; 38 pages, LaTeX, 5 figures,
epsfi
Baryogenesis in Cosmological Model with Superstring-Inspired E_6 Unification
We have developed a concept of parallel existence of the ordinary (O) and
hidden (H) worlds with a superstring-inspired E_6 unification, broken at the
early stage of the Universe into SO(10) X U(1) - in the O-world, and SU(6)' X
SU(2)' - in the H-world. As a result, we have obtained in the hidden world the
low energy symmetry group G'_SM X SU(2)'_\theta, instead of the Standard Model
group G_SM. The additional non-Abelian SU(2)'_\theta group with massless gauge
fields, "thetons", is responsible for the dark energy. We present a
baryogenesis mechanism with the B-L asymmetry produced by the conversion of
ordinary leptons into particles of the hidden sector.Comment: 15 pages, 2 figure
High Spin Gauge Fields and Two-Time Physics
All possible interactions of a point particle with background
electromagnetic, gravitational and higher-spin fields is considered in the
two-time physics worldline formalism in (d,2) dimensions. This system has a
counterpart in a recent formulation of two-time physics in non-commutative
field theory with local Sp(2) symmetry. In either the worldline or field theory
formulation, a general Sp(2) algebraic constraint governs the interactions, and
determines equations that the background fields of any spin must obey. The
constraints are solved in the classical worldline formalism (h-bar=0 limit) as
well as in the field theory formalism (all powers of h-bar). The solution in
both cases coincide for a certain 2T to 1T holographic image which describes a
relativistic particle interacting with background fields of any spin in (d-1,1)
dimensions. Two disconnected branches of solutions exist, which seem to have a
correspondence as massless states in string theory, one containing low spins in
the zero Regge slope limit, and the other containing high spins in the infinite
Regge slope limit.Comment: LaTeX 22 pages. Typos corrected in version
Self-dual noncommutative \phi^4-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory
We study quartic matrix models with partition function Z[E,J]=\int dM
\exp(trace(JM-EM^2-(\lambda/4)M^4)). The integral is over the space of
Hermitean NxN-matrices, the external matrix E encodes the dynamics, \lambda>0
is a scalar coupling constant and the matrix J is used to generate correlation
functions. For E not a multiple of the identity matrix, we prove a universal
algebraic recursion formula which gives all higher correlation functions in
terms of the 2-point function and the distinct eigenvalues of E. The 2-point
function itself satisfies a closed non-linear equation which must be solved
case by case for given E. These results imply that if the 2-point function of a
quartic matrix model is renormalisable by mass and wavefunction
renormalisation, then the entire model is renormalisable and has vanishing
\beta-function.
As main application we prove that Euclidean \phi^4-quantum field theory on
four-dimensional Moyal space with harmonic propagation, taken at its
self-duality point and in the infinite volume limit, is exactly solvable and
non-trivial. This model is a quartic matrix model, where E has for N->\infty
the same spectrum as the Laplace operator in 4 dimensions. Using the theory of
singular integral equations of Carleman type we compute (for N->\infty and
after renormalisation of E,\lambda) the free energy density
(1/volume)\log(Z[E,J]/Z[E,0]) exactly in terms of the solution of a non-linear
integral equation. Existence of a solution is proved via the Schauder fixed
point theorem.
The derivation of the non-linear integral equation relies on an assumption
which we verified numerically for coupling constants 0<\lambda\leq (1/\pi).Comment: LaTeX, 64 pages, xypic figures. v4: We prove that recursion formulae
and vanishing of \beta-function hold for general quartic matrix models. v3:
We add the existence proof for a solution of the non-linear integral
equation. A rescaling of matrix indices was necessary. v2: We provide
Schwinger-Dyson equations for all correlation functions and prove an
algebraic recursion formula for their solutio
The superstring Hagedorn temperature in a pp-wave background
The thermodynamics of type IIB superstring theory in the maximally
supersymmetric plane wave background is studied. We compute the thermodynamic
partition function for non-interacting strings exactly and the result differs
slightly from previous computations. We clarify some of the issues related to
the Hagedorn temperature in the limits of small and large constant RR 5-form.
We study the thermodynamic behavior of strings in the case of geometries in the presence of NS-NS and RR 3-form backgrounds. We
also comment on the relationship of string thermodynamics and the thermodynamic
behavior of the sector of Yang-Mills theory which is the holographic dual of
the string theory.Comment: 22 pages, JHEP style, minor misprints corrected, some comments adde
Transient field g factor and mean-life measurements with a rare isotope beam of 126Sn
Background: The g factors and lifetimes of the 21+ states in the stable, proton-rich Sn isotopes have been measured, but there is scant information on neutron-rich Sn isotopes. Purpose: Measurement of the g factor and the lifetime of the 21+ state at 1.141 MeV in neutron-rich 126Sn (T1/2=2. 3×105y). Method: Coulomb excitation in inverse kinematics together with the transient field and the Doppler shift attenuation techniques were applied to a radioactive beam of 126Sn at the Holifield Radioactive Ion Beam Facility. Results: g(21+)=-0.25(21) and τ(21+)=1.5(2) ps were obtained. Conclusions: The data are compared to large-scale shell-model and quasiparticle random-phase calculations. Neutrons in the h11/2 and d3/2 orbitals play an important role in the structure of the 21+ state of 126Sn. Challenges, limitations, and implications for such experiments at future rare isotope beam facilities are discussed
Theoretical description of deformed proton emitters: nonadiabatic coupled-channel method
The newly developed nonadiabatic method based on the coupled-channel
Schroedinger equation with Gamow states is used to study the phenomenon of
proton radioactivity. The new method, adopting the weak coupling regime of the
particle-plus-rotor model, allows for the inclusion of excitations in the
daughter nucleus. This can lead to rather different predictions for lifetimes
and branching ratios as compared to the standard adiabatic approximation
corresponding to the strong coupling scheme. Calculations are performed for
several experimentally seen, non-spherical nuclei beyond the proton dripline.
By comparing theory and experiment, we are able to characterize the angular
momentum content of the observed narrow resonance.Comment: 12 pages including 10 figure
Abelian and nonabelian vector field effective actions from string field theory
The leading terms in the tree-level effective action for the massless fields
of the bosonic open string are calculated by integrating out all massive fields
in Witten's cubic string field theory. In both the abelian and nonabelian
theories, field redefinitions make it possible to express the effective action
in terms of the conventional field strength. The resulting actions reproduce
the leading terms in the abelian and nonabelian Born-Infeld theories, and
include (covariant) derivative corrections.Comment: 49 pages, 1 eps figur
Feeding restriction impairs milk yield and physicochemical properties rendering it less suitable for sale
Feed shortages are relatively frequent in subtropical pasture-based dairy production systems. The effect of feed restriction on milk yield and physical-chemical traits was evaluated in this study. The experiment was carried out in Brazil’s south region. Treatments consisted of control and restricted diet. Six multiparous and six primiparous cows, with 499 ± 47.20 kg body weight (BW), at mid-lactation (188 ± 124 days in milk), producing 19.35 ± 4.10 kg of milk were assigned to two groups, balanced for parity, each group receiving a different sequence of the dietary treatments for 56 days, in a crossover design. Diet nominated as control included 8 kg DM 100 kg BW–1 of Bermuda grass var. Tifton pasture (Cynodon dactylon (L.) Pers.), 5.00 kg of concentrate and 2.50 kg of Tifton hay per day. The restriction diet consisted of 50 % of the quantity offered in the control diet. Milk production and physicochemical composition were evaluated. Feed restriction reduced milk production by 40 %, body condition score by 5 %, milk magnesium by 14.3 %, lactose by 1.7 %, titratable acidity by 10 % and stability to the ethanol test by 9 % and it tended to increase (7 %) milk potassium content. No changes were found for the remaining characteristics. Since feed restriction is quite frequent in Brazil’s extensive dairy production systems, our concern is that besides decreased milk production, changes can occur in the physiochemical attributes of the milk, mainly a reduction in the stability to the ethanol test, which may increase the volume of milk rejected by the industry
Leptonic and Semileptonic Decays of Charm and Bottom Hadrons
We review the experimental measurements and theoretical descriptions of
leptonic and semileptonic decays of particles containing a single heavy quark,
either charm or bottom. Measurements of bottom semileptonic decays are used to
determine the magnitudes of two fundamental parameters of the standard model,
the Cabibbo-Kobayashi-Maskawa matrix elements and . These
parameters are connected with the physics of quark flavor and mass, and they
have important implications for the breakdown of CP symmetry. To extract
precise values of and from measurements, however,
requires a good understanding of the decay dynamics. Measurements of both charm
and bottom decay distributions provide information on the interactions
governing these processes. The underlying weak transition in each case is
relatively simple, but the strong interactions that bind the quarks into
hadrons introduce complications. We also discuss new theoretical approaches,
especially heavy-quark effective theory and lattice QCD, which are providing
insights and predictions now being tested by experiment. An international
effort at many laboratories will rapidly advance knowledge of this physics
during the next decade.Comment: This review article will be published in Reviews of Modern Physics in
the fall, 1995. This file contains only the abstract and the table of
contents. The full 168-page document including 47 figures is available at
http://charm.physics.ucsb.edu/papers/slrevtex.p
- …