11 research outputs found

    Evidence of ventilation changes in the Arabian Sea during the late Quaternary:Implication for denitrification and nitrous oxide emission

    Get PDF
    Modern seawater profiles of oxygen, nitrate deficit, and nitrogen isotopes reveal the spatial decoupling of summer monsoon-related productivity and denitrification maxima in the Arabian Sea (AS) and raise the possibility that winter monsoon and/or ventilation play a crucial role in modulating denitrification in the northeastern AS, both today and through the past. A new high-resolution 50-ka record of delta(15) N from the Pakistan margin is compared to five other denitrification records distributed across the AS. This regional comparison unveils the persistence of east-west heterogeneities in denitrification intensity across millennial-scale climate shifts and throughout the Holocene. The oxygen minimum zone (OMZ) experienced east-west swings across Termination I and throughout the Holocene. Probable causes are (1) changes in ventilation due to millennial-scale variations in Antarctic Intermediate Water formation and (2) postglacial reorganization of intermediate circulation in the northeastern AS following sea level rise. Whereas denitrification in the world's OMZs, including the western AS, gradually declined following the deglacial maximum (10-9 ka BP), the northeastern AS record clearly witnesses increasing denitrification from about 8 ka BP. This would have impacted the global Holocene climate through sustained N2O production and marine nitrogen loss

    Incorporating progesterone receptor expression into the PREDICT breast prognostic model

    Get PDF
    Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0. 902 for patients with ER-positive tumours (p = 2.3 x 10(-6)) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predic-tions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration. (C) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe

    Incorporating progesterone receptor expression into the PREDICT Breast prognostic model

    No full text
    Background: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2).Method: the prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance.Results: having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10−6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted.Conclusion: the inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration

    Incorporating progesterone receptor expression into the PREDICT breast prognostic model

    Get PDF
    BACKGROUND: Predict Breast (www.predict.nhs.uk) is an online prognostication and treatment benefit tool for early invasive breast cancer. The aim of this study was to incorporate the prognostic effect of progesterone receptor (PR) status into a new version of PREDICT and to compare its performance to the current version (2.2). METHOD: The prognostic effect of PR status was based on the analysis of data from 45,088 European patients with breast cancer from 49 studies in the Breast Cancer Association Consortium. Cox proportional hazard models were used to estimate the hazard ratio for PR status. Data from a New Zealand study of 11,365 patients with early invasive breast cancer were used for external validation. Model calibration and discrimination were used to test the model performance. RESULTS: Having a PR-positive tumour was associated with a 23% and 28% lower risk of dying from breast cancer for women with oestrogen receptor (ER)-negative and ER-positive breast cancer, respectively. The area under the ROC curve increased with the addition of PR status from 0.807 to 0.809 for patients with ER-negative tumours (p = 0.023) and from 0.898 to 0.902 for patients with ER-positive tumours (p = 2.3 × 10-6) in the New Zealand cohort. Model calibration was modest with 940 observed deaths compared to 1151 predicted. CONCLUSION: The inclusion of the prognostic effect of PR status to PREDICT Breast has led to an improvement of model performance and more accurate absolute treatment benefit predictions for individual patients. Further studies should determine whether the baseline hazard function requires recalibration
    corecore