174 research outputs found

    Evaluating Michigan's community hospital access: spatial methods for decision support

    Get PDF
    BACKGROUND: Community hospital placement is dictated by a diverse set of geographical factors and historical contingency. In the summer of 2004, a multi-organizational committee headed by the State of Michigan's Department of Community Health approached the authors of this paper with questions about how spatial analyses might be employed to develop a revised community hospital approval procedure. Three objectives were set. First, the committee needed visualizations of both the spatial pattern of Michigan's population and its 139 community hospitals. Second, the committee required a clear, defensible assessment methodology to quantify access to existing hospitals statewide, taking into account factors such as distance to nearest hospital and road network density to estimate travel time. Third, the committee wanted to contrast the spatial distribution of existing community hospitals with a theoretical configuration that best met statewide demand. This paper presents our efforts to first describe the distribution of Michigan's current community hospital pattern and its people, and second, develop two models, access-based and demand-based, to identify areas with inadequate access to existing hospitals. RESULTS: Using the product from the access-based model and contiguity and population criteria, two areas were identified as being "under-served." The lower area, located north/northeast of Detroit, contained the greater total land area and population of the two areas. The upper area was centered north of Grand Rapids. A demand-based model was applied to evaluate the existing facility arrangement by allocating daily bed demand in each ZIP code to the closest facility. We found 1,887 beds per day were demanded by ZIP centroids more than 16.1 kilometers from the nearest existing hospital. This represented 12.7% of the average statewide daily bed demand. If a 32.3 kilometer radius was employed, unmet demand dropped to 160 beds per day (1.1%). CONCLUSION: Both modeling approaches enable policymakers to identify under-served areas. Ultimately this paper is concerned with the intersection of spatial analysis and policymaking. Using the best scientific practice to identify locations of under-served populations based on many factors provides policymakers with a powerful tool for making good decisions

    Chronic kidney disease in type 1 diabetes:translation of novel type 2 diabetes therapeutics to individuals with type 1 diabetes

    Get PDF
    Current management of chronic kidney disease (CKD) in type 1 diabetes centres on glycaemic control, renin–angiotensin system inhibition and optimisation of risk factors including blood pressure, lipids and body weight. While these therapeutic approaches have significantly improved outcomes among people with type 1 diabetes and CKD, this population remains at substantial elevated risk for adverse kidney and cardiovascular events, with limited improvements over the last few decades. The significant burden of CKD and CVD in type 1 diabetes populations highlights the need to identify novel therapies with the potential for heart and kidney protection. Over the last decade, sodium–glucose cotransporter-2 inhibitors, glucagon-like peptide 1 receptor agonists and non-steroidal mineralocorticoid receptor antagonists have emerged as potent kidney-protective and/or cardioprotective agents in type 2 diabetes. The consistent, substantial kidney and cardiovascular benefits of these agents has led to their incorporation into professional guidelines as foundational care for type 2 diabetes. Furthermore, introduction of these agents into clinical practice has been accompanied by a shift in the focus of diabetes care from a ‘glucose-centric’ to a ‘cardiorenal risk-centric’ approach. In this review, we evaluate the potential translation of novel type 2 diabetes therapeutics to individuals with type 1 diabetes with the lens of preventing the development and progression of CKD.</p

    Genetic Discrimination Between LADA and Childhood-Onset Type 1 Diabetes Within the MHC

    Get PDF
    OBJECTIVE The MHC region harbors the strongest loci for latent autoimmune diabetes in adults (LADA); however, the strength of association is likely attenuated compared with that for childhood-onset type 1 diabetes. In this study, we recapitulate independent effects in the MHC class I region in a population with type 1 diabetes and then determine whether such conditioning in LADA yields potential genetic discriminators between the two subtypes within this region. RESEARCH DESIGN AND METHODS Chromosome 6 was imputed using SNP2HLA, with conditional analysis performed in type 1 diabetes case subjects (n = 1,985) and control subjects (n = 2,219). The same approach was applied to a LADA cohort (n = 1,428) using population-based control subjects (n = 2,850) and in a separate replication cohort (656 type 1 diabetes case, 823 LADA case, and 3,218 control subjects). RESULTS The strongest associations in the MHC class II region (rs3957146, beta [SE] = 1.44 [0.05]), as well as the independent effect of MHC class I genes, on type 1 diabetes risk, particularly HLA-B*39 (beta [SE] = 1.36 [0.17]), were confirmed. The conditional analysis in LADA versus control subjects showed significant association in the MHC class II region (rs3957146, beta [SE] = 1.14 [0.06]); however, we did not observe significant independent effects of MHC class I alleles in LADA. CONCLUSIONS In LADA, the independent effects of MHC class I observed in type 1 diabetes were not observed after conditioning on the leading MHC class II associations, suggesting that the MHC class I association may be a genetic discriminator between LADA and childhood-onset type 1 diabetes.Peer reviewe

    TXNIP Regulates Peripheral Glucose Metabolism in Humans

    Get PDF
    BACKGROUND: Type 2 diabetes mellitus (T2DM) is characterized by defects in insulin secretion and action. Impaired glucose uptake in skeletal muscle is believed to be one of the earliest features in the natural history of T2DM, although underlying mechanisms remain obscure. METHODS AND FINDINGS: We combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated to total body measures of glucose uptake. Forced expression of TXNIP in cultured adipocytes significantly reduced glucose uptake, while silencing with RNA interference in adipocytes and in skeletal muscle enhanced glucose uptake, confirming that the gene product is also a regulator of glucose uptake. TXNIP expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic β-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM

    Loss of ZnT8 function protects against diabetes by enhanced insulin secretion.

    Get PDF
    A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8, p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    The Association of a SNP Upstream of INSIG2 with Body Mass Index is Reproduced in Several but Not All Cohorts

    Get PDF
    A SNP upstream of the INSIG2 gene, rs7566605, was recently found to be associated with obesity as measured by body mass index (BMI) by Herbert and colleagues. The association between increased BMI and homozygosity for the minor allele was first observed in data from a genome-wide association scan of 86,604 SNPs in 923 related individuals from the Framingham Heart Study offspring cohort. The association was reproduced in four additional cohorts, but was not seen in a fifth cohort. To further assess the general reproducibility of this association, we genotyped rs7566605 in nine large cohorts from eight populations across multiple ethnicities (total n = 16,969). We tested this variant for association with BMI in each sample under a recessive model using family-based, population-based, and case-control designs. We observed a significant (p < 0.05) association in five cohorts but saw no association in three other cohorts. There was variability in the strength of association evidence across examination cycles in longitudinal data from unrelated individuals in the Framingham Heart Study Offspring cohort. A combined analysis revealed significant independent validation of this association in both unrelated (p = 0.046) and family-based (p = 0.004) samples. The estimated risk conferred by this allele is small, and could easily be masked by small sample size, population stratification, or other confounders. These validation studies suggest that the original association is less likely to be spurious, but the failure to observe an association in every data set suggests that the effect of SNP rs7566605 on BMI may be heterogeneous across population samples

    HLA Genes, Islet Autoantibodies and Residual C-Peptide at the Clinical Onset of Type 1 Diabetes Mellitus and the Risk of Retinopathy 15 Years Later

    Get PDF
    HLA genes, islet autoantibodies and residual C-peptide were studied to determine the independent association of each exposure with diabetic retinopathy (DR), 15 years after the clinical onset of type 1 diabetes in 15-34 year old individuals.The cohort was identified in 1992 and 1993 by the Diabetes Incidence Study in Sweden (DISS), which investigates incident cases of diabetes for patients between 15 and 34 years of age. Blood samples at diagnosis were analyzed to determine HLA genotype, islet autoantibodies and serum C-peptide. In 2009, fundus photographs were obtained from patient records. Study measures were supplemented with data from the Swedish National Diabetes Registry.The prevalence of DR was 60.2% (148/246). Autoantibodies against the 65 kD isoform of glutamate decarboxylase (GADA) at the onset of clinical diabetes increased the risk of DR 15 years later, relative risk 1.12 for each 100 WHO units/ml, [95% CI 1.02 to 1.23]. This equates to risk estimates of 1.27, [95% CI 1.04 to 1.62] and 1.43, [95% CI 1.06 to 1.94] for participants in the highest 25(th) (GADA>233 WHO units/ml) and 5(th) percentile (GADA>319 WHO units/ml) of GADA, respectively. These were adjusted for duration of diabetes, HbA(1c), treated hypertension, sex, age at diagnosis, HLA and C-peptide. Islet cell autoantibodies, insulinoma-antigen 2 autoantibodies, residual C-peptide and the type 1 diabetes associated haplotypes DQ2, DQ8 and DQ6 were not associated with DR.Increased levels of GADA at the onset of type 1 diabetes were associated with DR 15 years later. These results, if confirmed, could provide additional insights into the pathogenesis of the most common microvascular complication of diabetes and lead to better risk stratification for both patient screenings and DR treatment trials
    corecore