424 research outputs found

    Improving supplementary feeding in species conservation

    Get PDF
    Supplementary feeding is often a knee-jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities

    Moving I`iwi (Vestiaria coccinea) as a Surrogate for Future Translocations of Endangered `Akohekohe (Palmeria dolei)

    Get PDF
    Translocations often play an important role in the recovery of endangered species. To assess feasibility for translocation of endangered `Akohekohe (Palmeria dolei), we conducted an experimental translocation of I`iwi (Vestiaria coccinea) from east to west Maui. Mist-netting, veterinary screening of candidate birds, and helicopter transport of healthy I`iwi were successful, resulting in no injuries or mortalities. Translocated birds were assigned to two types of release. Hard release birds were radio tagged and released on the day of translocation. In contrast, soft release birds were held in large cages for 7 days and fed artificial nectar. During holding soft release I`iwi feeding rates, fecal production, and mass were monitored. Soft release birds suffered 33% mortality during the holding period. At the end of the holding period, soft release survivors were outfitted with a radio transmitter and released. All translocated I`iwi were followed by radio telemetry for an average of 21 days. Once released, soft release birds showed higher rates of movement, possibly reflecting conflict with established hard released I`iwi. Our results suggest that translocation efforts for wild `Akohekohe will be successful if hard release protocols are followed

    Characterization of Mauritius parakeet (Psittacula eques) microsatellite loci and their cross-utility in other parrots (Psittacidae, Aves).

    Get PDF
    We characterized 21 polymorphic microsatellite loci in the endangered Mauritius parakeet (Psittacula eques). Loci were isolated from a Mauritius parakeet genomic library that had been enriched separately for eight different repeat motifs. Loci were characterized in up to 43 putatively unrelated Mauritius parakeets from a single population inhabiting the Black River Gorges National Park, Mauritius. Each locus displayed between three and nine alleles, with the observed heterozygosity ranging between 0.39 and 0.96. All loci were tested in 10 other parrot species. Despite testing few individuals, between seven and 21 loci were polymorphic in each of seven species tested

    Evolutionary history and identification of conservation units in the giant otter, Pteronura brasiliensis.

    Get PDF
    The giant otter, Pteronura brasiliensis, occupies a range including the major drainage basins of South America, yet the degree of structure that exists within and among populations inhabiting these drainages is unknown. We sequenced portions of the mitochondrial DNA (mtDNA) cytochrome b (612 bp) and control region (383 bp) genes in order to determine patterns of genetic variation within the species. We found high levels of mtDNA haplotype diversity (h = 0.93 overall) and support for subdivision into four distinct groups of populations, representing important centers of genetic diversity and useful units for prioritizing conservation within the giant otter. We tested these results against the predictions of three hypotheses of Amazonian diversification (Pleistocene Refugia, Paleogeography, and Hydrogeology). While the phylogeographic pattern conformed to the predictions of the Refugia Hypothesis, molecular dating using a relaxed clock revealed the phylogroups diverged from one another between 1.69 and 0.84 Ma, ruling out the influence of Late Pleistocene glacial refugia. However, the role of Plio-Pleistocene climate change could not be rejected. While the molecular dating also makes the influence of geological arches according to the Paleogeography Hypothesis extremely unlikely, the recent Pliocene formation of the Fitzcarrald Arch and its effect of subsequently altering drainage pattern could not be rejected. The data presented here support the interactions of both climatic and hydrological changes resulting from geological activity in the Plio-Pleistocene, in shaping the phylogeographic structure of the giant otter

    Microcapsule Buckling Triggered by Compression-Induced Interfacial Phase Change

    Get PDF
    There is an emerging trend towards the fabrication of microcapsules at liquid interfaces. In order to control the parameters of such capsules, the interfacial processes governing their formation must be understood. Here, poly(vinyl alcohol) films are assembled at the interface of water-in-oil microfluidic droplets. The polymer is cross-linked using cucurbit[8]uril ternary supramolecular complexes. It is shown that compression-induced phase change causes the onset of buckling in the interfacial film. On evaporative compression, the interfacial film both increases in density and thickens, until it reaches a critical density and a phase change occurs. We show that this increase in density can be simply related to the film Poisson ratio and area compression.This description captures fundamentals of many compressive interfacial phase changes and can also explain the observation of a fixed thickness-to-radius ratio at buckling, (TR)\left(\frac TR\right)buck_{buck}

    Mechanical cleaning of food soil from a solid surface: A tribological perspective

    Get PDF
    In this work, a tribological approach was used to distinguish the synergistic effects of mechanical removal and chemical removal (i.e. dissolution) of a layer of representative food soil from a solid surface, using a tribometer, Mini Traction Machine (MTM). Gravimetric and wear measurements of the soil were used to calculate the cleaning rates of burnt tomato puree on a stainless-steel disc, and the corresponding frictional characteristics offers insight of the mechanical removal. The cleaning due to soil dissolution (chemical removal) was quantified by UV–Vis measurements. The overall cleaning rates of food soil featured a linear reduction in mass over time, with a scaled removal rate k = 0.0046 s−1 (5 N applied force and 100 mm s−1 relative velocity), for most cases studied. It was observed that the cleaning rate can be improved with an increasing mechanical load or speed (50% from 1 to 2.5 N and 13% from 50 to 100 mm s−1), but is independent of the initial mass. UV–Vis measurements show that by increasing the load or speed the removal of chunks of burnt tomato puree was enhanced more than removal attributed to dissolution. Similar values of cleaning rates for most experimental parameters were extracted from both the gravimetric and wear measurements. Adhesion and cohesion measurements of the burnt tomato puree were conducted with a micromanipulator. It was found that adhesion forces are higher than cohesion for short soaking times, but for longer times the adhesion forces became weaker and with the additional shear rate in the MTM cleaning experiment, adhesion failure was observed in many cases by the end of the experiment. Indentation measurements showed the change in mechanical properties of the food foulant with a few minutes of soaking in water

    Using Qualitative Disease Risk Analysis for Herpetofauna Conservation Translocations Transgressing Ecological and Geographical Barriers

    Get PDF
    Through the exploration of disease risk analysis methods employed for four different UK herpetofauna translocations, we illustrate how disease hazards can be identified, and how the risk of disease can be analysed. Where ecological or geographical barriers between source and destination sites exist, parasite populations are likely to differ in identity or strain between the two sites, elevating the risk from disease and increasing the number and category of hazards requiring analysis. Simplification of the translocation pathway through the avoidance of these barriers reduces the risk from disease. The disease risk analysis tool is intended to aid conservation practitioners in decision making relating to disease hazards prior to implementation of a translocation
    corecore