31 research outputs found

    Are movement disorders and sensorimotor injuries pathologic synergies? When normal multi-joint movement synergies become pathologic

    Get PDF
    The intact nervous system has an exquisite ability to modulate the activity of multiple muscles acting at one or more joints to produce an enormous range of actions. Seemingly simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial and temporal patterns of muscle activations. Neurological disorders such as stroke and focal dystonia affect the ability to coordinate multi-joint movements. This article reviews the state of the art of research of muscle synergies in the intact and damaged nervous system, their implications for recovery and rehabilitation, and proposes avenues for research aimed at restoring the nervous system’s ability to control movement

    Patient characteristics, health status, and health-related behaviors associated with obesity.

    Get PDF
    The objective of this study was to identify factors associated with obesity and to examine the health habits of the obese and non-obese. In this study of over 44,000 insured individuals, obesity rates increased with age until age 65 and were highest among members of Samoan ancestry. Because the causes of obesity are multi-faceted, treatment approaches may need to address diet, exercise, pharmacotherapy and management of comorbid conditions

    Phase-dependent deficits during reach-to-grasp after human spinal cord injury

    No full text
    Most cervical spinal cord injuries result in asymmetrical functional impairments in hand and arm function. However, the extent to which reach-to-grasp movements are affected in humans with incomplete cervical spinal cord injury (SCI) remains poorly understood. Using kinematics and electromyographic (EMG) recordings in hand and arm muscles we studied the different phases of unilateral self-paced reach-to-grasp movements (arm acceleration, hand opening and closing) to a small cylinder in the more and less affected arms of individuals with cervical SCI and in age-matched controls. We found that SCI subjects showed prolonged movement duration in both arms during arm acceleration, and hand opening and closing compared with controls. Notably, the more affected arm showed an additional increase in movement duration at the time to close the hand compared with the less affected arm. Also, the time at which the index finger and thumb contacted the object and the variability of finger movement trajectory were increased in the more compared with the less affected arm of SCI participants. Participants with prolonged movement duration during hand closing were those with more pronounced deficits in sensory function. The muscle activation ratio between the first dorsal interosseous and abductor pollicis brevis muscles decreased during hand closing in the more compared with the less affected arm of SCI participants. Our results suggest that deficits in movement kinematics during reach-to-grasp movements are more pronounced at the time to close the hand in the more affected arm of SCI participants, likely related to deficits in EMG muscle activation and sensory function. NEW & NOTEWORTHY Humans with cervical spinal cord injury usually present asymmetrical functional impairments in hand and arm function. Here, we demonstrate for the first time that deficits in movement kinematics during reaching and grasping movements are more pronounced at the time to close the hand in the more affected arm of spinal cord injury. We suggest that this is in part related to deficits in muscle activation ratios between hand muscles and a decrease in sensory function
    corecore