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The intact nervous system has an exquisite ability to modulate the activity of multiple mus-
cles acting at one or more joints to produce an enormous range of actions. Seemingly
simple tasks, such as reaching for an object or walking, in fact rely on very complex spatial
and temporal patterns of muscle activations. Neurological disorders such as stroke and
focal dystonia affect the ability to coordinate multi-joint movements. This article reviews
the state of the art of research of muscle synergies in the intact and damaged nervous sys-
tem, their implications for recovery and rehabilitation, and proposes avenues for research
aimed at restoring the nervous system’s ability to control movement.
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INTRODUCTION
The term “synergy” – from the Greek synergia – means “work-
ing together.” The concept of multiple elements working together
toward a common goal has been extensively used to develop exper-
imental approaches and analytical techniques to understand how
the central nervous system (CNS) controls movement. A classic
definition of synergy is “a collection of relatively independent
degrees of freedom that behave as a single functional unit” [for
review, see Turvey (2007)]. As noted in a recent review, this very
definition of “synergy” can have different implications in terms
of underlying mechanisms depending on the scale of the system
at which it is applied, e.g., groups of motor units, muscles, and/or
joints (Santello et al., 2013). However, one of the most widely stud-
ied and informative domains for identifying synergies has been
muscle activity, quantified as patterns of interference electromyo-
graphic (EMG) activity recorded simultaneously across multiple
muscles. This research has provided important insights into the
modular nature of control of a variety of movements by identify-
ing multi-muscle EMG patterns, i.e., muscle synergies [for review,
see Ting and McKay (2007) and Bizzi et al. (2008)]; for discus-
sion on the modular control of movement from an evolutionary
perspective, the reader is referred to a recent review by Lacquaniti
et al. (2013). Specifically, these muscle synergies have been defined
as “building blocks” of complex movements that can be flexibly
combined when performing different tasks, or the same task per-
formed in different conditions, by modulating the timing and/or
amplitude of EMG activity of individual muscles [for review, see
d’Avella and Lacquaniti (2013)].

The quest for synergies at different levels of the system has
led to the development of several approaches to quantify the

structure and number of synergies in a variety of tasks, includ-
ing the modulation of hand posture to object geometry [e.g.,
principal components analysis (Santello et al., 1998, 2002) and
singular value decomposition (Mason et al., 2001)], digit force
coordination during force production tasks [uncontrolled mani-
fold analysis, UCM: for review, see Latash et al. (2002); see also
Latash and Anson (2006)] for application of UCM analysis to
study the effects of neurological disorders and aging on motor
coordination), multi-digit force coordination during prehension
[hierarchical organization of grasp variables and virtual finger;
for review, see Zatsiorsky and Latash (2004)], and coordination
of activation across multiple muscles [non-negative matrix fac-
torization: for review, see Tresch et al. (2006)]. For more details
on how these techniques have been applied to a large variety of
motor tasks and their interpretation, the reader is referred to a
recent review on the neural bases of hand synergies (Santello et al.,
2013). Importantly, how synergies are defined or conceptualized
may or may not account for how synergies are built and retrieved,
or how flexible they might be [for a detailed overview of theo-
retical frameworks underlying synergies, the reader is referred to
Latash (2008) and Santello et al. (2013)]. However, it has been
proposed that the role of synergies may be to map high-level
goals to multi-muscle activation patterns, as suggested by their
sensitivity to specific task performance goals (Ting and McKay,
2007; Tresch and Jarc, 2009). Furthermore, even though several
mechanisms could potentially be involved in coupling the activity
of multiple muscles (e.g., reflexes, supraspinal networks, and/or
spinal modules driven by supraspinal drive), these mechanisms
need not be mutually exclusive [for review, see Bizzi and Che-
ung (2013) and Giszter and Hart (2013)]. Importantly, a common
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Santello and Lang Pathological movement synergies

denominator across many definitions and interpretations is that
biomechanical and neural factors constrain the spatial and tem-
poral coordination of groups of muscles and joints. The net effect
of the interaction of these constraints is a reduction in the num-
ber of degrees of freedom that are, or can be, controlled during
movement execution.

In the clinical domain, however, the term synergy is not applied
uniformly. Over the years, “synergy” has been used in a variety of
different ways, such that sometimes the same term represents dif-
ferent constructs or phenomena. Other times, different terms have
been used to express the same construct or phenomenon. One of
the earliest uses of the term “synergy” occurred at the beginning of
the 20th century when Babinski intended to describe the patho-
logical flexor reflex response caused by stimulation on the plantar
surface of the foot in the presence of corticospinal tract damage,
i.e., “the Babinski sign” (Van Gijn, 1978). Since then,“synergy” has
been broadly used to describe abnormal, stereotypic movements,
such as in Brunnstrom’s depiction of abnormal synergies after
corticospinal system damage (Brunnstrom, 1966, 1970). In more
recent times, the term “synergy” is still used (Cheung et al., 2012),
along with other terms such as “abnormal coupling,” “abnormal
coactivation” (Dewald et al., 1995), and “motor overflow” (Tung
et al., 2011). Within the above-described framework of “muscle
synergies,” the study of pathological synergies following stroke has
identified these synergies as emerging from one or more phenom-
ena affecting the system’s ability to flexibly combine a given set of
muscles by modulating their timing and/or activity, thus resulting
in the use of a smaller number of muscle synergies, or fractions of
physiological synergies (Clark et al., 2010; Safavynia et al., 2011;
Cheung et al., 2012; Bizzi and Cheung, 2013).

The present paper focuses on the effects of neurological disor-
ders on the ability of the CNS to coordinate movement through
synergies. Although many definitions of synergies have been pro-
posed [for review, see Tresch et al. (2006) and Santello et al. (2013),
for review], it is generally agreed that a common feature spanning
across these multiple definitions is that the coordination of multi-
ple variables (muscles or joints) occur within a lower dimensional
space than the available number of dimensions involved in the
task. We will use the term “synergy” to denote patterns of vol-
untary muscle activity and multi-joint coordination that – while
emerging in a repeatable fashion across subjects and movement
repetitions – reduce the dimensionality of the control space while
maintaining a certain degree of flexibility in terms of spatial and/or
temporal coupling to task requirements. The definition we use
here is motivated by the need to use a “baseline” of physiological
coordinated movements, which involve multi-degrees of freedom
to which pathological synergies can be compared to. Pathological
synergies can arise from both volitional and reflexive control of
movement. By this definition, a pathological synergy could be a
loss of coordinated muscle patterns (and therefore movement), a
more fixed or constrained set of coordinated muscle patterns, or a
smaller number of synergies identified in the physiological system,
e.g., the contralateral limb to the side affected by stroke (Cheung
et al., 2012). The neurological disorders discussed in subsequent
sections can affect the repeatability with which a given movement
can be executed, and/or the flexibility with which it can be adapted
to different task demands or circumstances.

SYNERGIES IN THE INTACT SYSTEM
The interaction between biomechanical and neural constraints
dictates how and whether multi-joint motion may occur. Although
the anatomy of the nervous and muscular systems appear to favor
distributed neural inputs to multiple muscles and motion at sev-
eral joints (Schieber and Santello, 2004; Santello et al., 2013), the
“holy grail” of motor neuroscience research on synergies remains
determining the extent to which biomechanical constraints shape
motor commands that underlie the coordination of multi-joint
movements. For example, when considering the neural control
of the hand, biomechanical constraints such as tendons spanning
three joints of the index finger would predict that activation of
flexor muscles would produce torques and motion at all of the
digital joints. However, this particular movement pattern is not
obligatory. We can flex the index finger about one joint only,
e.g., metacarpal–phalangeal joint, while blocking flexion of the
proximal and distal inter-phalangeal joints. The former scenario
occurs when we intend to firmly grasp an object, whereas the lat-
ter scenario occurs when we use the finger in slight flexion of all
joints to type or press on the display of a smart phone. These
examples underscore a critical issue: the CNS can take advantage
of biomechanical constraints to generate multi-joint movements,
but maintains some ability to override them depending on the
demands of the task. Hence, in the intact system, such flexibility
is crucially important not only to enable a wide variety of motor
behaviors but also to allow movement patterns to flexibly adapt to
different task conditions, e.g., walking on hard floor versus sand,
or grasping a cylinder by flexing all fingers versus using only the
thumb and index fingertip for dexterous manipulation.

The extent to which patterns of coordination emerge or exist
in the activation of multiple muscles and multi-joint movements
or forces has been extensively studied across many tasks, including
single digit force production (Valero-Cuevas, 2000), multi-digit
force production tasks (Zatsiorsky et al., 2000), hand shaping (San-
tello et al., 1998; Mason et al., 2004; Vinjamuri et al., 2007), multi-
digit grasping (Santello and Soechting, 2000; Rearick et al., 2003;
Zatsiorsky et al., 2003), typing (Soechting and Flanders, 1997),
postural control (Lockhart and Ting, 2007), and gait (Ivanenko
et al., 2004). First, this requires a balance of activation of the intrin-
sic muscles inside the hand and extrinsic muscles in the forearm.
In addition, there is a coexistence of flexibility and repeatability of
coordination patterns found across these tasks. For example, single
digit force production is characterized by consistent correlations
in EMG amplitude from all index finger muscles. At the same time,
however, a certain degree of independent control of individual fin-
ger muscles has also been observed when examining the structure
of task-relevant and -irrelevant variability (Valero-Cuevas et al.,
2009). Similarly, consistent patterns of multi-digit force coordi-
nation are found when holding an object statically against gravity
(Santello and Soechting, 2000; Rearick and Santello, 2002). Such
patterns of synchronous force relations, however, are not found
when the same forces are exerted on the same object when sub-
jects are not required to prevent object slip (Rearick et al., 2003). A
synergy-based framework has also been used to describe the coor-
dination of multiple trunk and leg muscles during gait. This has
been deduced because only five factors have been extracted from
principal component analysis to account for the spatiotemporal
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Santello and Lang Pathological movement synergies

variability in EMG activity elicited by walking at different speeds
and loads (Ivanenko et al., 2004).

A THEORETICAL FRAMEWORK FOR SYNERGISTIC CONTROL
OF MOVEMENT
A recent review of the literature on synergies underlying the con-
trol of the hand led to a theoretical framework, which emphasizes
the role of spinal circuitry and the interplay of excitatory and
inhibitory inputs from spinal premotor neurons in implementing
synergistic control of hand muscles (Santello et al., 2013). Briefly,
pools of premotor neurons are defined as a dynamical system
capable of changing “state,” where each state corresponds to spe-
cific patterns of muscle activation or synergies. The shape of the
potential function of the dynamics of the system is controlled by
descending motor commands. A given pattern of muscle activa-
tion would result from the convergence of inputs from pools of
inhibitory and excitatory premotor neurons to alpha-motor neu-
rons. It should be noted that this framework, at this stage, is purely
theoretical. Therefore, its validation and the extent to which it can
be integrated with existing theoretical frameworks [see Santello
et al. (2013) for review] remain to be established experimentally.
Nevertheless, this theoretical framework does highlight important
features that are found across many tasks involving upper or lower
limb muscle synergies, such as the ability to learn new synergies
and the extent to which a given synergy might appear to be “fixed”
or “flexible.” For example, extensive motor practice would lead to
adaptation of the premotor circuitry that would generate the same
synergy in a consistent fashion despite variability or noise in the
spatiotemporal patterns of motor commands, hence appearing as a
“fixed” synergy. Conversely, a “flexible” synergy would result from
several clusters of premotor circuitry that can be recruited with
similar likelihood for similar sets of descending and ascending

inputs [flat potential field in Figure 4 in Santello et al. (2013)].
Common to this definition of synergies and earlier definition of
muscle synergies is the notion that the organization of spinal
circuitry has evolved to combine spinal modules for controlling
multiple muscles in a way that reduces the large dimensionality
afforded by the number of available muscles.

Importantly, this framework emphasizes the role of sensory
feedback in affecting the net input of premotor neuron pools to
alpha-motor neurons as well as in signaling unexpected events
to higher levels of the motor system. In the present review, we
will use this framework as a model for describing the effects of
central and peripheral pathologies on the CNS’ ability to imple-
ment synergy-based control. Note that this theoretical framework
is compatible with the muscle synergy model proposed by Bizzi
and Cheung (2013). However, the former framework does not
provide a formal definition of “modules” and focuses on premotor
neuron networks as the main “node” of the system responsible for
creating and selecting muscle synergies. Despite these differences,
selective disruption of premotor circuitry involved in the selection
of specific muscle synergies would predict the same behavioral
outcomes that have been described in stroke patients, i.e., merging
and/or fractionation of physiological muscle synergies.

EFFECTS OF VARIOUS PATHOLOGIES ON THE PRESENCE AND
CONTROL OF SYNERGIES
Injury or disease to the nervous system can affect the physiological
synergies discussed above, resulting in pathological synergies for
movement control. In the following sections, this review discusses
how damage to various parts of the nervous system influences
synergistic control. Figure 1 shows a conceptual representation of
physiological synergies on the left, with anatomical labels on the
right. Two conditions presented here alter the descending inputs

Descending inputs

Cortical and subcortical areas

Corticospinal tract

Ventromedial brainstem tracts

Dorsolateral brainstem tracts

Spinal cord

Somatosensory feedback

Muscles

premotor neurons

spinal motor nuclei

neuromuscular synapses

FIGURE 1 | Conceptual representation of physiological synergies (left) with anatomical labels (right). Black circles denote inhibitory premotor neurons.
Adapted from Santello et al. (2013).
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Santello and Lang Pathological movement synergies

from cortical and subcortical structures; these are stroke and focal
hand dystonia. Two other conditions, spinal cord injury and carpal
tunnel syndrome (CTS), disrupt the physiological activation of
premotor and spinal motor nuclei and somatosensory feedback,
respectively. These four conditions are not intended to be an all-
inclusive list of conditions that result in pathological synergies, but
rather they were selected based on sufficient available literature.
Within each condition, we discuss implications for recovery and
motor rehabilitation.

STROKE
The majority of published work on pathological synergies has been
done in people with stroke. A stroke occurs when a blood vessel in
the brain is blocked (ischemic stroke), or ruptured (hemorrhagic
stroke), resulting in lack of blood flow and oxygen supply to a
part of the brain, causing neurons to die. The types and degree
of impairment following a stroke depend upon which areas of
the brain are damaged and the extent of that damage (Ninds,
2013). Stroke survivors can experience difficulty with movement,
language, cognition, somatosensation, vision, and other functions
(Gresham et al., 1979; Go et al., 2013). Whereas motor deficits, par-
ticularly paresis, are the most common, people often experience
deficits in multiple domains, because the disruption of blood flow
does not respect functional anatomic boundaries. The upper limb

is often more impaired than the lower limb when the lesion occurs
within the middle cerebral artery distribution (the most common
arterial distribution for stroke). In contrast, the lower limb is more
impaired than the upper limb when the stroke occurs within the
anterior cerebral artery distribution. Early clinical observations of
pathological synergistic control noted that, as volitional movement
emerged over the course of stroke recovery, single joint actions
did not occur in isolation, but instead occurred with actions of
the other joints of the limb (Twitchell, 1951; Brunnstrom, 1970).
In addition, volitional movements observed in supine and sit-
ting were often unavailable when standing up against gravity, as it
requires a greater generation of forces to initiate limb movement
when having to overcome gravitational forces.

Neuronal death caused by stroke affecting the motor cortex
and its output, the corticospinal tract, essentially limits the corti-
cal neural substrate available for physiological synergistic control.
In other words, the range and flexibility of the descending com-
mand is limited. This is conceptually depicted in Figure 2A. With
a smaller number of cortical cells available (or connected), the
control options are reduced. Specifically, the potential function
we described above would lose its ability to be shaped by descend-
ing input as well as the integration of descending and ascending
inputs. As a result, stable but fewer patterns of muscle activity
would arise, thus resulting in a reduced ability to adapt to task

FIGURE 2 | Conceptual representations of how four conditions can result
in pathological synergies. (A) Stroke, where the neural substrate from
which the descending inputs arise is reduced. (B) Focal hand dystonia, where
the neural substrate the descending inputs arise from has abnormal inhibitory

circuitry. (C) Spinal cord injury, where the premotor and spinal motor neurons
are damaged. (D) Carpal tunnel syndrome, where the somatosensory
feedback for synergistic control is disrupted. Adapted from Santello et al.
(2013).
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Santello and Lang Pathological movement synergies

demands. The first quantifications of these pathological synergies
reported muscle activation patterns at the shoulder and elbow that
were no longer direction specific, and an inability to isolate acti-
vation to a particular muscle (Bourbonnais et al., 1989; Dewald
et al., 1995). For example, when attempting to activate shoulder
abductor muscles, subjects also activated elbow flexor muscles.
The opposite also occurred, such that when attempting to activate
elbow flexor muscles, subjects also activated shoulder abductor
muscles. Kinetic output in the presence of less muscle isolation
and more coactivation resulted in force production that was less
focal with abnormal coupling between shoulder and elbow actions
(Dewald and Beer, 2001; Tung et al., 2011). Similarly, the kinematic
output presented as a reduced ability to move in all directions and
smaller available workspace for the shoulder and elbow (Beer et al.,
2007).

The pathological synergies poststroke extend beyond the shoul-
der and elbow, spreading across the entire upper limb (Kamper and
Rymer, 2001; Lang and Beebe, 2007; Ohn et al., 2013). Small, iso-
lated strokes to the primary motor cortex or to the corticospinal
tract can be sufficient enough to cause a loss of selective finger mus-
cle activation, such that the fingers tend to move together instead
of as individuated movements (Lang and Schieber, 2003, 2004). As
the lesions become larger and cause neural damage beyond these
areas, the overall picture of loss of fractionated finger movements
is similar (Raghavan et al., 2006). Even in people who are severely
affected poststroke, one can see abnormal synergistic control, as
indicated by coactivation and more stereotypic movement pat-
terns across the entire arm (Lan et al., 2011; Miller and Dewald,
2012). The degree of pathological synergy (i.e., loss of fractionated
movement) is consistently correlated with the loss of functional
upper limb ability, regardless of the specific subpopulation stud-
ied and/or the methods for quantifying synergistic movements
and function (Bourbonnais et al., 1989; Lang and Schieber, 2003,
2004; Raghavan et al., 2006; Lang and Beebe, 2007; Beebe and Lang,
2008; Miller and Dewald, 2012; Ohn et al., 2013).

The number of non-obligatory upper limb synergies available
for movement function after stroke is reduced, with an emerging
appreciation that the numerous, physiological pre-stroke syner-
gies may be merged to only a few available pathological synergies
poststroke (Cheung et al., 2012; Roh et al., 2013). In these studies,
EMG is recorded from multiple limb muscles. The EMG signal
is decomposed and then re-assembled into factors (i.e., syner-
gies) using non-negative matrix factorization. The premise here
is that the quantifiable synergies extracted represent the underly-
ing building blocks of the motor system (Tresch et al., 2002; Flash
and Hochner, 2005; Bizzi et al., 2008). The decision about the
final number of synergies to select is determined by the amount of
variance explained from the EMG signal; common thresholds are
80–90% of variance explained. Interestingly, pathological syner-
gies are apparent relatively early after stroke (Beebe and Lang,2008;
Ellis et al., 2011). These synergies are most predominant when
the patient is required to move against gravity. In more mildly
affected individuals, the synergies can improve quickly over time
(Ellis et al., 2011). With people who are more moderately affected,
the presence of some merged and some partial pre-stroke syner-
gies later poststroke may reflect a compensatory control scheme
to enable functional movement capabilities (Cheung et al., 2012).

Increasing effort required for movement, often tested with increas-
ing gravitational load on the upper limb, results in more pro-
nounced (worsened) abnormal control, as indicated by more
coactivation and a reduced ability to produce fractionated move-
ment out of the pathological synergy pattern (Beer et al., 2007;
Ellis et al., 2007).

The lower limb and its movements are similarly affected by the
reduced neural substrate poststroke, leading to reduced control
options and fewer, more stereotypic movement patterns. Neuro-
logically intact individuals use variable activation of four motor
synergies (or modules) to produce gait (Clark et al., 2010). The
four synergies roughly correspond to (1) extensor activity at the
hip and knee during early stance to support body weight; (2) flex-
ion activity at the knee and ankle (plantar flexion) during late
stance for forward propulsion of the body and swing initiation; (3)
flexor activity at the ankle (dorsiflexion) knee, and hip during early
stance to eccentrically decelerate the limb segments, and through
to early swing to allow the foot to clear the ground; and (4) flexion
activity at the knee and extensor activity at the hip during late
swing into early stance to decelerate the limb segments and propel
the body forward during stance (Neptune et al., 2009). Poststroke
individuals tend to have access to fewer motor synergies for gait
control than neurologically intact individuals (Clark et al., 2010;
Allen et al., 2013). Abnormal coupling between leg muscles is not
only seen during gait but also during instructed volitional activa-
tion, such as during instructed isometric hip adduction (Krishnan
and Dhaher, 2012). Interestingly, activation of limited synergies
may be the primary means to activate some lower limb muscles,
as indicated by lower limb muscle activation (tibialis anterior)
that occurs during gait but not during instructed volitional acti-
vation (Bowden et al., 2010). Thus, literature from both the upper
limb and the lower limb contributes to the current understand-
ing of pathological synergies poststroke, despite the perceptions
of relative differences in the importance of various neural control
structures, i.e., motor cortex for upper limb control versus spinal
cord for lower limb control.

The implications of the pathological synergies poststroke on
recovery and motor rehabilitation are complex. As implied above,
the presence of mild pathological synergy (or even the presence
of intact physiological synergies) is an indicator of good recovery
after stroke. The presence of strong pathological synergies is most
often accompanied by other, key motor deficits, such as paresis,
and collectively, these are indicators of poor recovery and loss of
functional ability (Lang and Beebe, 2007; Lang et al., 2013).

Some of the earliest rehabilitation approaches were designed
to avoid pathological synergistic movements and to retrain only
normal movement patterns (Brunnstrom, 1970). Unfortunately,
after many years of clinical trials, these approaches have not been
shown to improve motor impairments and function for people
with stroke (Veerbeek et al., 2014). This may be because pathologi-
cal synergies, once present beyond the mild stage, are not amenable
to change, or because the overall approach tested was a more con-
ceptual, and not an explicit, rigorous attempt to “untrain” the
pathological synergies.

Two modern reports have specifically addressed synergistic
control after stroke. In the first, motor training was explicitly tar-
geted toward reducing coupling of affected shoulder and elbow
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Santello and Lang Pathological movement synergies

muscles (Ellis et al., 2005). After 8 weeks of training, subjects
with moderate-to-severe stroke could produce shoulder and elbow
torques that were less coupled and more varied than the pre-
training stereotypic patterns, i.e., an improvement in the patholog-
ical synergy. However, improvements were small, and their clinical
relevance was not clear. In the second study, the motor training
was not explicitly targeted toward modifying synergistic control,
but instead targeted at regaining walking function (Routson et al.,
2013). After 12 weeks of training, subjects with mild-to-moderate
stroke had leg motor synergies for walking that more closely resem-
bled the synergies of neurologically intact individuals and had an
increased number of available synergies to access during walk-
ing. Improvements in walking function were clinically meaningful
as well.

Further study into the modifiability of pathological synergistic
control poststroke is needed. Specifically, factors such as stroke
severity and body parts trained make it difficult to determine if
intervention approaches specifically targeting abnormal synergis-
tic control will eventually produce better outcomes. Caution is
warranted, however, on the issue of specificity of training in rela-
tion to functional outcomes because neurorehabilitation has a long
history of targeting specific impairments, where the impairment-
based approaches have led to improvements in those impairments,
but not to improvements in daily function (Duncan et al., 2005;
Teasell et al., 2008).

FOCAL HAND DYSTONIA
Focal dystonia alters synergistic control in a manner different to
that of stroke. Dystonia refers to a group of movement disorders
characterized by coactivation of agonist and antagonist muscles,
leading to abnormal, twisting, end range repetitive postures (Fahn,
1988). This review focuses on studies of focal hand dystonia
because this is the specific dystonic population in which investiga-
tion of upper limb movement control is most common. The causes
of focal hand dystonia are multifactorial and include genetics
(Altenmuller and Jabusch, 2009; Neychev et al., 2011; Jinnah et al.,
2013). Even for people with a genetic risk for dystonia, all individ-
uals will not go on to develop dystonia. The genotype can lead to
the phenotype of dystonia in the presence of other factors, such as
stress, anxiety, heavy repetitive hand use, and trauma (Altenmuller
and Jabusch, 2009). Most focal hand dystonias are task specific
and arise from many years with long hours of repetitive activity
(Torres-Russotto and Perlmutter, 2008b). For a review of simi-
larities and differences across the adult-onset focal dystonias, see
Jinnah et al. (2013). Two common forms arise from extended peri-
ods of writing (writer’s cramp) or playing a musical instrument
(Torres-Russotto and Perlmutter, 2008a). Prevalent movement
behaviors include tremor and abnormal muscle activations during
the dystonia-inducing task, i.e., loss of ability to flexibly adapt the
coordination pattern (Jinnah et al., 2013). For example, a musi-
cian may be unable to isolate ring and little finger movements
while playing the violin, and instead activate multiple muscles
of the wrist, hand, and forearm simultaneously. The pathological
synergy is usually apparent only in one specific task early in the
course of the disease, but spreads to other movements, and even
up the entire limb, as the condition progresses without interven-
tion. The specific pathological synergies, or patterns of abnormal

movement, are not similar across individuals with hand dysto-
nia (e.g., writer’s cramp, musician’s cramp, keyboarder’s cramp).
For example, while patients with writer’s cramp may excessively
squeeze the pen and increase the pressure down with writing, these
patients do not necessarily exert excessive force with grasping and
manipulating other objects (Hermsdorfer et al., 2011; Schneider
et al., 2014). Across the variations of focal hand dystonia, deficits
are not seen during basic daily movements, such as reach-grasp-
lift (Odergren et al., 1996; Nowak et al., 2013), likely because the
planned movement does not require the specific, overused pattern
of premotor activation. The fact that the pathological synergies are
observed only (at least at first) during the dystonia-inducing task
is distinctly different from the pathological synergies seen post-
stroke and spinal cord injury, where they are present for nearly
all movements. In the above example of stroke, pathological syn-
ergistic control was due to loss of corticospinal system neurons,
i.e., observed movements are a result of what is left intact. In con-
trast, in focal hand dystonia, the motor cortex and pathways are
intact, but the organization within and among structures is abnor-
mal (Hallett, 2011; Altenmuller and Muller, 2013). Thus, observed
movements emerge from the disrupted cortical and subcortical
organization; this is depicted conceptually in Figure 2B. While
this conceptualization is rather generic, it is a theoretical model,
not a computational one. Future studies could test this theoretical
model by quantifying the number and nature of synergies using
methods applied poststroke (Cheung et al., 2012; Roh et al., 2013)
to people with focal hand dystonia and other conditions resulting
in disordered cortical and subcortical organization (e.g.,Parkinson
disease). Specifically for focal hand dystonia, the extensive repeti-
tive practice leading up to dystonia may result in highly sensitive
and finely tuned premotor neurons, and over time, a degradation
in somatosensory discrimination and cortical processing. Even-
tually, the descending command has changed sufficiently that the
highly sensitive premotor neuronal shaping may be inappropri-
ate. The framework would predict a larger number of abnormal
synergies observed and that they may not be stereotypic in form.

A consensus in the field is that pathological synergistic control
seen with focal hand dystonias arises from a loss of inhibition (Hal-
lett, 2011; Quartarone and Hallett, 2013). The problem is essen-
tially one of excessive movement, where the normal mechanisms
that inhibit unwanted movements are disrupted. Inhibitory cir-
cuitry of multiple types (e.g., surround inhibition, short-interval
cortical inhibition) are dysfunctional, resulting in coactivation,
loss of selective activation, and thus, excessive movement that is
unintended (Beck et al., 2008; Beck and Hallett, 2011; Quartarone
and Hallett, 2013). Loss of inhibition occurs at the level of local
circuits related to the control of movement (Moore et al., 2012) as
well as across larger scale brain networks (Jin et al., 2011a,b). In
addition to the loss of inhibition, people with focal hand dystonia
also have a mild loss of somatosensation and altered sensorimotor
integration (Bara-Jimenez et al., 2000a,b; Quartarone and Hallett,
2013), such that the afferent information is slightly inaccurate and
not easily utilized to plan future movements. The loss of inhibi-
tion and mild somatosensory deficits are further compounded by
evidence of maladaptive plasticity, where there is an exaggerated
responsiveness to repetitive inputs (Hallett, 2011; Quartarone and
Hallett, 2013).
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It is not clear if the maladaptive plasticity is a unique feature
versus one that arises from altered inhibitory circuits, diminished
somatosensory information, or extended periods of repetitive
task-practice. The answer likely lies somewhere in the middle,
given that the degree of large-scale cortical network deficiencies
is moderately related to duration of the disease (Jin et al., 2011b).
Particularly relevant for distal upper limb control is the loss of sur-
round inhibition at low force levels (Beck et al., 2009). Because the
majority of precise task-specific movements involve low force lev-
els, the greatest problems with synergistic movement control, i.e., a
loss of selective muscle activation, occurs exactly at the time when
the person desires precise control the most. This is opposite to
the increasing pathological synergistic control seen with increas-
ing forces and effort levels in people with stroke (see previous
section).

Literature on recovery and motor rehabilitation of focal hand
dystonia is relatively sparse. Focal hand dystonia does not resolve
spontaneously, and people are often reluctant to give up the inten-
sive dystonia-inducing actions (e.g., professional musicians do not
want to stop playing their musical instrument). Numerous inter-
ventions have been tried, with each intervention aimed only at
a piece of the pathology and resulting in inconsistent or limited
success (Jinnah et al., 2013; van Vugt et al., 2014). A common
treatment is injection of small amounts of botulinum toxin, in
order to quiet the muscles. For addressing pathological syner-
gies of the hand, the injection of botulinum toxin can be quite
challenging as there are a large number of muscles involved and
precise motor control is highly valued (Hallett et al., 2009). Even
with EMG-guided injections toward the most affected muscles,
results can be variable across patients and studies (Hallett et al.,
2009; Jinnah et al., 2013), perhaps because the intervention is
addressing the symptoms rather than the cause of the pathological
synergy.

Other types of intervention for focal hand dystonia address
the mechanisms of the pathological synergy. These interventions
range from immobilization to various sensorimotor retraining
strategies for the hand and individual digits (Candia et al., 1999,
2003; Zeuner and Hallett, 2003; Zeuner et al., 2005; Baur et al.,
2009; Byl et al., 2009; Cogiamanian et al., 2009). These interven-
tions target the maladaptive plasticity with the goal of facilitating
flexibility of the pathological synergies. A more novel intervention
is transcranial magnetic stimulation with the goal of increasing
cortical inhibition (Cogiamanian et al., 2009; Quartarone, 2013).
Combinations of these interventions are currently being explored.
Given the complex mechanisms of this relatively uncommon con-
dition, any conclusions regarding rehabilitation effectiveness for
focal hand dystonia are premature based on the small sample sizes,
limited patient compliance, and limited follow-up data.

SPINAL CORD INJURY
Another population in which motor synergies are commonly stud-
ied is spinal cord injury (Giszter and Hart, 2013). Disruption to
the motor system happens above and at the level of the premo-
tor and spinal motor neurons (Figure 2C). Signs and symptoms
after spinal cord injury occur because of damage to the ascending
and descending pathways within the cord (traditionally referred
to as upper motor neuron signs), and because of damage to the

spinal inter- and motor neurons (lower motor neuron signs). Thus,
damage may have a direct result on how the physiologic synergies
are accessed and implemented and on whether or not they can
be accessed at all (Shapkova and Schomburg, 2001; Zariffa et al.,
2012), as well as the extent to which they can be modulated by
afferent inputs (Figure 1).

Observations of pathologic synergies after spinal cord injury
have been documented most commonly at the kinematic and EMG
levels. The general consensus that arises from these observations
is that physiological synergies are present and accessible at their
most basic level (de los Reyes-Guzman et al., 2010; Kloosterman
et al., 2010; Wu et al., 2011; Field-Fote et al., 2012), as long as
the spinal motoneurons can still activate their muscles (Gronley
et al., 2000; Koshland et al., 2005). Some synergistic patterns are
changed to compensate for muscles that can no longer be activated
(Lin et al., 2008; Jacquier-Bret et al., 2009). There is early evidence
opening a debate as to whether the number of synergistic patterns
(i.e., motor modules) available is reduced after spinal cord injury
(Zariffa et al., 2012; Fox et al., 2013) versus whether the available
synergistic patterns are just arranged differently (Ivanenko et al.,
2003, 2009).

Recovery after spinal cord injury can be reasonably predicted
based on the segmental level of injury to the cord and on whether
or not the injury is clinically complete versus incomplete. For
those with incomplete injury, substantial efforts have been made
to help patients increase access to available synergistic patterns
to promote recovery of walking and other functions (Harkema
et al., 2012; Hubli and Dietz, 2013; Morawietz and Moffat, 2013).
It is well documented that available synergistic patterns can still
be modified in response to a variety of inputs (Harkema et al.,
1997; Gordon et al., 2009; Dy et al., 2010). Indeed, a major focus
of rehabilitation research for people with incomplete spinal cord
injury is to find and optimize innovative methods to access and
modify preserved synergies for functional gain (Harkema et al.,
2012; Hubli and Dietz, 2013).

CARPAL TUNNEL SYNDROME
Dexterous hand control requires integration of sensory feedback
with motor commands responsible for digit placement and force
sharing among the digits. Another neuromuscular disorder that
can affect synergistic control of digit forces is CTS. In this disor-
der, somatosensory feedback about the hand and hand movements
is not readily available to optimize control of finger muscles
(Figure 2D). CTS is a compression neuropathy of the median
nerve. Mild CTS causes somatosensory deficits in the thumb,
index, middle, and lateral half of the ring finger, but in severe cases
median nerve compression can cause motor deficits primarily in
the thumb. Mechanical compression of the median nerve over long
periods of time can cause ischemic damage and/or changes in the
nerve myelination, and consequently slowing of axonal conduc-
tion velocity, nerve block, and in severe cases axonal loss (Welford,
1972; Nora et al., 2004). CTS signs and symptoms include numb-
ness, aching, and or burning on the volar aspect of the affected
hand, somatosensory loss, weakness, hyporeflexia, and clumsiness.
People with CTS often complain about difficulties in performing
activities of daily living, such as dropping objects, or dexterous
tool use.

Frontiers in Human Neuroscience www.frontiersin.org January 2015 | Volume 8 | Article 1050 | 7

http://www.frontiersin.org/Human_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Human_Neuroscience/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Santello and Lang Pathological movement synergies

Investigations of the effects of CTS on the coordination of finger
movements indicate that people with CTS exhibit large across-trial
variability in precision pinch movements (Gehrmann et al., 2008)
as well as reach-to-pinch kinematics (Nataraj et al., 2014). CTS
studies on the coordination of multi-digit forces have revealed
consistent disruption of synergistic coordination of grip force and
load force (normal and tangential to the grasp surface, respec-
tively) as a function of object mass, mass distribution, and texture.
Specifically, whereas healthy individuals are known to exert grip
forces that are only slightly larger than the minimum required
to prevent object slip (“safety margin”; Westling and Johansson,
1984), people with CTS tend to exert significantly and system-
atically larger grip force than controls when using a whole-hand
grasp (Zhang et al., 2011, 2012; Afifi et al., 2012). The systematic
force overshoot might represent a decrease of sensory feedback
and the development of a compensatory strategy to minimize
risks of dropping the object. This strategy would compensate for
deficits in tactile sensation and, possibly, sensorimotor integration.
Importantly, however, the above CTS-induced impairment in the
synergistic control of grip and load forces affects not only static
grasp force production (e.g., holding an object against gravity) but
also the anticipatory modulation of digit forces that occurs prior
to the onset of object manipulation, e.g., object lift. Anticipatory
grasp control relies on integrating sensorimotor memory of previ-
ous manipulation with online monitoring of sensory feedback [for
review, see Johansson and Flanagan (2009)]. The “memory” com-
ponent associated with anticipatory control is likely to be related
to the reorganization of cortical sensory and motor areas asso-
ciated with inflammation of peripheral tissues due to repetitive
motor behaviors (Coq et al., 2009). As CTS impairs sensory func-
tion of a subset of the digits, one would expect that both the
formation of sensorimotor memory and the integration of online
sensory feedback would be affected. Specifically, people with CTS
are less able than controls to use prior experience to scale digit
forces in an anticipatory fashion to object weight (Zhang et al.,
2011) and are less successful when distributing digit forces to pre-
vent rotation of the object (Zhang et al., 2012). Another deficit in
anticipatory control is the reduced ability to balance digit forces,
resulting in unnecessary net moments at object lift onset when
about to lift objects with a symmetrical center of mass (Zhang
et al., 2013). When people with CTS are asked to lift an object
with an asymmetrical mass distribution, they can learn to gen-
erate a compensatory moment and minimize object roll to the
same extent as controls. However, multi-digit force coordination
in controls fully exploited the available degrees of freedom to
generate a compensatory moment, i.e., digit normal forces, tan-
gential forces, and the net center of pressure on the finger side
of the device at object lift onset and during object hold. In con-
trast, people with CTS modulated only the finger net center of
pressure at object lift onset by modulating normal force shar-
ing patterns while using the same normal and tangential forces
across all object CMs. During object hold, however, people with
CTS were able to modulate digit tangential force distribution to
object CM. Therefore, although CTS did not affect a person’s
ability to perform dexterous manipulation, it interfered with the
modulation of specific grasp control variables. This phenome-
non might be indicative of a lower degree of flexibility of the

sensorimotor system in CTS to adapt to grasp task conditions,
specific to the loss of sensation and strength following peripheral
neuropathy.

As CTS is a compression neuropathy of the median nerve, reha-
bilitation interventions have focused on relieving the compression
and its associated symptoms. Current best evidence suggests a
multi-modal approach with steroid injections or other modali-
ties to relieve inflammation, and splinting and exercise to improve
wrist position and reduce compression (Piazzini et al., 2007; Page
et al., 2012). Outcomes in rehabilitation clinical trials for CTS typi-
cally measure impairments such as pain symptoms or grip strength
(Page et al., 2012), but do not examine the ability to flexibly adapt
synergistic upper extremity movement patterns as a function of
task demands and sensory inputs. To date, there are no longitu-
dinal studies examining the effects of rehabilitation interventions
aimed at modifying CTS-induced pathological multi-digit force
synergies, e.g., non-zero net torque on the object at lift-off. Ongo-
ing work is now quantifying how carpal tunnel release surgery,
which allows for partial median nerve regeneration, might lead
to restoration of physiological digit force coordination patterns
(Santello et al., 2014).

SOME ADDITIONAL THOUGHTS ACROSS AND BETWEEN
CONDITIONS
From a historical perspective, pathological synergies have been
readily identified after stroke and spinal cord injury. Focal hand
dystonia and CTS have rarely been included in the list of condi-
tions causing pathological synergies. A hallmark feature across all
four of these conditions is the reduced flexibility in adapting avail-
able muscle synergies to task requirements. In stroke and spinal
cord injury, this is readily seen by the casual observer. In focal
hand dystonia, the reduction in flexibility is restricted to one or
two tasks, at least early in the course of the disorder. In CTS, the
reduced flexibility is far less obvious and has only become appar-
ent with highly quantitative measures of movement. A weakness of
our theoretical framework for dystonia and CTS is that the condi-
tions are multifactorial and pathological synergies are inconsistent
across subjects.

A difference that emerges across the four conditions is regarding
how reflexive activity contributes to the pathological synergies. In
stroke and spinal cord injury, hyperactive reflexes are present and
may play a role in the observed stereotypic synergies. In contrast,
focal hand dystonia and CTS tend to be associated with decreased,
or hypoactive reflexes. Thus, the reflexive component is a piece of
pathological synergies in some conditions but not others.

Across all four conditions, pathological synergies and the
observed movement behaviors are affected by other factors and,
in turn, affect other parts of the movement system. Two exam-
ples are described here and are not intended to be an exhaustive
list. For stroke, pre-existing comorbidities, such as diabetes and
hypertension, influence recovery (Go et al., 2013). After the initial
lesion, the pathological synergy has downstream effects on mus-
cle tissue and joint range of motion (Jakobsson et al., 1991, 1992;
Gemperline et al., 1995; Given et al., 1995; Frontera et al., 1997).
For focal hand dystonia, genetic predisposition or previous trauma
can influence the severity and course of the condition (Altenmuller
and Jabusch, 2010; Jinnah et al., 2013). On the downstream side,
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sustained postures often result in shortened muscles and excessive
activation.

The neurobiological underpinings of each condition also pro-
vide insight into the opportunity to “recover” normal synergies.
For pathological synergies in stroke and spinal cord injury, where
there is a substantial loss of neurons, it may be exceedingly difficult
to move in any way except for the abnormal synergistic pattern.
In contrast, education and specifically tailored exercises for people
with CTS can alter the gripping pattern. Going further, decom-
pression and return of sensory and motor nerve conduction may
eliminate the pathological synergy altogether.

DIRECTIONS FOR FUTURE RESEARCH
While there has been tremendous growth in our understanding of
physiological and pathological movement synergies, there is still a
great deal left unknown. A major need for future research is large,
longitudinal studies of synergies in various patient populations. As
discussed in the opening sections of this review, physiological syn-
ergies are complex because they blend a “hard-wired” component
(i.e., biomechanical constraints such as tendons spanning more
than one joint) and a “soft-wired” component (flexible interaction
of sensory information and activation of specific combinations of
muscles). The presence of intact, flexible, and modifiable phys-
iological synergies are what allows human beings to function so
successfully in our changing environments. In order to re-establish
a flexible physiological synergy versus an abnormal fixed synergy
after nervous system injury, one needs to track if and how this can
occur over long periods of time, including how synergistic control
might or might not respond to various interventions.

One possibility that might yield a better understanding of
pathologic synergies would be to develop a classification system
based on synergy severity. An example of such an approach is pro-
vided by Cheung et al. (2012) who associated specific patterns of
muscle coordination with the severity of functional impairment
and the time from stroke onset. A classification system of syn-
ergy severity might be most logically developed within a given
condition and not across conditions. Such a system that might be
very useful for categorizing people into various subpopulations
could be tested and eventually may respond differently to specific
interventions. An argument against the utility of a severity classi-
fication scheme is that pathological synergies may not be the most
relevant aspect of the condition for recovery. For example, work
from Dr. Lang and others would argue that it is paresis and not
abnormal synergies that are the greatest contributor to functional
loss after stroke (Bohannon and Smith, 1987; Bourbonnais and
Vanden Noven, 1989; Mercier and Bourbonnais, 2004; Lang and
Beebe, 2007; Beebe and Lang, 2008, 2009). Likewise, it would be
reasonable to argue that pain and loss of somatosensation could
be the main drivers of functional deficits in CTS (Zhang and San-
tello, 2014). Thus, the effort of grading and categorizing could be
an interesting scientific exercise, but in the long run could turn
out to be wasted effort in the quest for better outcomes for people
affected by these conditions. It is too early to tell, at the present
time, which side of this argument will be the eventual winner.

In order to improve our understanding regarding how to reha-
bilitate patients with abnormal, fixed synergies, we must be able
to quantify pathological synergies in a more standardized fashion

within and across patient populations. An ideal standard method-
ology would be flexible so that it was sensitive to the idiosyncratic
features of a range of conditions (e.g., from focal hand dysto-
nia to CTS) and a range of severities (e.g., from mild to severe).
Furthermore, the methodology should be simple, so that it could
be incorporated into clinical care (e.g., grip devices that measure
coordination of finger forces and not just maximum force across
all fingers). Incorporation into clinical care would permit efficient
data collection on larger, more heterogeneous patient samples that
can be followed over long periods of time. Mechanical, electronic,
and computational technologies are advancing so rapidly that one
can easily envision clever, non-obtrusive devices that can quantify
synergistic control in the not-so-distant future.

Ongoing research to cure stroke, focal hand dystonia, spinal
cord injury, and CTS is progressing. These cures can take many
different forms, such as novel pharmaceutical agents, stem cell
implantations, and implanted or external biomedical devices. The
eventual success of these potential future cures will depend on
their ability to restore flexible, adaptable movement synergies.
Some important questions that need to be addressed include“How
many synergies are needed for function?” “Which synergies are
most important to restore?” “How flexible does a synergy need to
be for effective use in one’s daily environment?” and “How does
one most efficiently retrain synergies?” A logical approach would
be to start perusing these questions now, so that as potential cures
emerge from basic research labs, the appropriate motor behavioral
training methods are in place to facilitate success.

CONCLUSION
Physiological synergies allow for repeatable, yet flexible coordi-
nation of multi-joint movements that can adapt to changing
environments. Normal physiological synergies in persons with an
intact nervous system can become pathological synergies when
damage occurs at various levels of that system. Understanding
the pathological synergies, whether or not they are amenable to
change, or the extent to which they can be modified, and how they
affect a person’s ability to move flexibly in daily life is important
for healthcare providers, such as neurologists, physiatrists, phys-
ical therapists, occupational therapists, and nurses. As reviewed,
various neurological conditions disrupt synergistic control at dif-
ferent points within the nervous system (Figure 2) with different
effects on movement control. To better understand pathological
synergies and improve the chances of restoring normal phys-
iological synergies, longitudinal studies with large sample sizes
and standard quantitative methodology are needed, together with
efforts aimed at elucidating the mechanisms through which the
CNS exploits neural and biomechanical constraints for controlling
multi-degrees of freedom movements.
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