133 research outputs found

    Re-telling, Re-cognition, Re-stitution: Sikh Heritagization in Canada

    Get PDF
    In Canada, the language and techniques of museums and heritage sites have been adopted and adapted by some immigrant communities to make sense of their place within their new country. For some groups, “heritagization” is a new value, mobilized for diverse purposes. New museums and heritage sites serve as a form of ethnic media, becoming community gathering points, taking on pedagogical roles, enacting citizenship, and enabling strategic assertion of identity in the public sphere. This article explores this enactment of heritage and citizen-membership through a case study, the Sikh Heritage Museum, developed in Abbotsford by Indo-Canadians. Established in 2011 in an historic and still-functioning gurdwara, the museum is an example of a community’s desire to balance inward-looking historical consciousness and community belonging, with outward-looking voice, recognition and acceptance by mainstream Canadian society. The museum has also become a site of tension between top-down and bottom-up initiatives, where amateur and local expressions butt up against professionalized government activities such as the Canadian Historical Recognition Program that seek to insert formal recognition and social inclusion policies. The article considers the effects of this resource and power differential on the museum’s development, and on the sensibilities and practices of immigrant “heritage” and “citizenship” in Canada

    Demonstration of the First Real-Time End-to-End 40-Gb/s PAM-4 for Next-Generation Access Applications using 10-Gb/s Transmitter

    Get PDF
    We demonstrate the first known experiment of a real-time end-to-end 40-Gb/s PAM-4 system for next-generation access applications using 10-Gb/s class transmitters only. Based on the measurement of a real-time 40-Gb/s PAM system, low-cost upstream and downstream link power budgets are estimated. Up to 27 dB and 25 dB power budgets for 10 km and 20 km standard single-mode fiber (SSMF) upstream links using EDFA preamplifiers are achieved. For downstream links using booster EDFAs and APD receivers, power budgets of 26.5 dB and 24.5 dB are feasible for 10 km and 20 km SMFs, respectively. In addition, we show that colorless 40 Gb/s PAM-4 transmission over 20 km SMF in the C-band is achievabl

    Testing of worn face mask and saliva for SARS-CoV-2

    Get PDF
    BackgroundExhaled SARS-CoV-2 can be detected on face masks. We compared tests for SARS-CoV-2 RNA on worn face masks and matched saliva samples.MethodsWe conducted this prospective, observational, case-control study between December 2021 and March 2022. Cases comprised 30 in-center hemodialysis patients with recent COVID-19 diagnosis. Controls comprised 13 hemodialysis patients and 25 clinic staff without COVID-19 during the study period and the past 2 months. Disposable 3-layer masks were collected after being worn for 4 hours together with concurrent saliva samples. ThermoFisher COVID-19 Combo Kit (A47814) was used for RT-PCR testing.ResultsMask and saliva testing specificities were 99% and 100%, respectively. Test sensitivity was 62% for masks, and 81% for saliva (p = 0.16). Median viral RNA shedding duration was 11 days and longer in immunocompromised versus non-immunocompromised patients (22 vs. 11 days, p = 0.06, log-rank test).ConclusionWhile SARS-CoV-2 testing on worn masks appears to be less sensitive compared to saliva, it may be a preferred screening method for individuals who are mandated to wear masks yet averse to more invasive sampling. However, optimized RNA extraction methods and automated procedures are warranted to increase test sensitivity and scalability. We corroborated longer viral RNA shedding in immunocompromised patients

    Energy‐efficient colourless photonic technologies for next‐generation DWDM metro and access networks

    Get PDF
    Within the scope of our EU FP7 C3PO project, we are developing novel, energy-efficient, colourless photonic technologies for low-cost, next-generation dense wavelength-division-multiplexed metro transport and access networks. The colourless transmitters use reflective arrayed photonic integrated circuits, particularly hybrid reflective electroabsorption modulators, and multi-wavelength laser sources, with custom power-efficient driver circuitry. A low-loss piezoelectric beam-steering optical matrix switch allows for dynamic wavelength reconfigurability. Simplifying the required optical and electronic hardware, as well as avoiding the need for expensive, thermally-stabilised tuneable lasers, will yield cost and energy savings for data switching applications in future metro, access, and datacentre interconnection networks. We report on recent advancement towards these low-power optical networks, providing the latest systems results achieved with key enabling hybrid photonic integrated devices and electronic driver/receiver arrays for our targeted applications

    Collinear helium under periodic driving: stabilization of the asymmetric stretch orbit

    Get PDF
    The collinear eZe configuration of helium, with the electrons on opposite sides of the nucleus, is studied in the presence of an external electromagnetic (laser or microwave) field. We show that the classically unstable "asymmetric stretch" orbit, on which doubly excited intrashell states of helium with maximum interelectronic angle are anchored, can be stabilized by means of a resonant driving where the frequency of the electromagnetic field equals the frequency of Kepler-like oscillations along the orbit. A static magnetic field, oriented parallel to the oscillating electric field of the driving, can be used to enforce the stability of the configuration with respect to deviations from collinearity. Quantum Floquet calculations within a collinear model of the driven two-electron atom reveal the existence of nondispersive wave packets localized on the stabilized asymmetric stretch orbit, for double excitations corresponding to principal quantum numbers of the order of N > 10.Comment: 13 pages, 12 figure

    Invertebrate neurophylogeny: suggested terms and definitions for a neuroanatomical glossary

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Invertebrate nervous systems are highly disparate between different taxa. This is reflected in the terminology used to describe them, which is very rich and often confusing. Even very general terms such as 'brain', 'nerve', and 'eye' have been used in various ways in the different animal groups, but no consensus on the exact meaning exists. This impedes our understanding of the architecture of the invertebrate nervous system in general and of evolutionary transformations of nervous system characters between different taxa.</p> <p>Results</p> <p>We provide a glossary of invertebrate neuroanatomical terms with a precise and consistent terminology, taxon-independent and free of homology assumptions. This terminology is intended to form a basis for new morphological descriptions. A total of 47 terms are defined. Each entry consists of a definition, discouraged terms, and a background/comment section.</p> <p>Conclusions</p> <p>The use of our revised neuroanatomical terminology in any new descriptions of the anatomy of invertebrate nervous systems will improve the comparability of this organ system and its substructures between the various taxa, and finally even lead to better and more robust homology hypotheses.</p

    Top-Level Categories of Constitutively Organized Material Entities - Suggestions for a Formal Top-Level Ontology

    Get PDF
    Application oriented ontologies are important for reliably communicating and managing data in databases. Unfortunately, they often differ in the definitions they use and thus do not live up to their potential. This problem can be reduced when using a standardized and ontologically consistent template for the top-level categories from a top-level formal foundational ontology. This would support ontological consistency within application oriented ontologies and compatibility between them. The Basic Formal Ontology (BFO) is such a foundational ontology for the biomedical domain that has been developed following the single inheritance policy. It provides the top-level template within the Open Biological and Biomedical Ontologies Foundry. If it wants to live up to its expected role, its three top-level categories of material entity (i.e., 'object', 'fiat object part', 'object aggregate') must be exhaustive, i.e. every concrete material entity must instantiate exactly one of them.By systematically evaluating all possible basic configurations of material building blocks we show that BFO's top-level categories of material entity are not exhaustive. We provide examples from biology and everyday life that demonstrate the necessity for two additional categories: 'fiat object part aggregate' and 'object with fiat object part aggregate'. By distinguishing topological coherence, topological adherence, and metric proximity we furthermore provide a differentiation of clusters and groups as two distinct subcategories for each of the three categories of material entity aggregates, resulting in six additional subcategories of material entity.We suggest extending BFO to incorporate two additional categories of material entity as well as two subcategories for each of the three categories of material entity aggregates. With these additions, BFO would exhaustively cover all top-level types of material entity that application oriented ontologies may use as templates. Our result, however, depends on the premise that all material entities are organized according to a constitutive granularity

    Accommodating Ontologies to Biological Reality—Top-Level Categories of Cumulative-Constitutively Organized Material Entities

    Get PDF
    BACKGROUND: The Basic Formal Ontology (BFO) is a top-level formal foundational ontology for the biomedical domain. It has been developed with the purpose to serve as an ontologically consistent template for top-level categories of application oriented and domain reference ontologies within the Open Biological and Biomedical Ontologies Foundry (OBO). BFO is important for enabling OBO ontologies to facilitate in reliably communicating and managing data and metadata within and across biomedical databases. Following its intended single inheritance policy, BFO's three top-level categories of material entity (i.e. ‘object’, ‘fiat object part’, ‘object aggregate’) must be exhaustive and mutually disjoint. We have shown elsewhere that for accommodating all types of constitutively organized material entities, BFO must be extended by additional categories of material entity. METHODOLOGY/PRINCIPAL FINDINGS: Unfortunately, most biomedical material entities are cumulative-constitutively organized. We show that even the extended BFO does not exhaustively cover cumulative-constitutively organized material entities. We provide examples from biology and everyday life that demonstrate the necessity for ‘portion of matter’ as another material building block. This implies the necessity for further extending BFO by ‘portion of matter’ as well as three additional categories that possess portions of matter as aggregate components. These extensions are necessary if the basic assumption that all parts that share the same granularity level exhaustively sum to the whole should also apply to cumulative-constitutively organized material entities. By suggesting a notion of granular representation we provide a way to maintain the single inheritance principle when dealing with cumulative-constitutively organized material entities. CONCLUSIONS/SIGNIFICANCE: We suggest to extend BFO to incorporate additional categories of material entity and to rearrange its top-level material entity taxonomy. With these additions and the notion of granular representation, BFO would exhaustively cover all top-level types of material entities that application oriented ontologies may use as templates, while still maintaining the single inheritance principle
    corecore