19 research outputs found

    Expansion and further delineation of the SETD5 phenotype leading to global developmental delay, variable dysmorphic features, and reduced penetrance

    Get PDF
    Diagnostic exome sequencing (DES) has aided delineation of the phenotypic spectrum of rare genetic etiologies of intellectual disability (ID). A SET domain containing 5 gene (SETD5) phenotype of ID and dysmorphic features has been previously described in relation to patients with 3p25.3 deletions and in a few individuals with de novo sequence alterations. Herein, we present additional patients with pathogenic SETD5 sequence alterations. The majority of patients in this cohort and previously reported have developmental delay, behavioral/psychiatric issues, and variable hand and skeletal abnormalities. We also present an apparently unaffected carrier mother of an affected individual and a carrier mother with normal intelligence and affected twin sons. We suggest that the phenotype of SETD5 is more complex and variable than previously presented. Therefore, many features and presentations need to be considered when evaluating a patient for SETD5 alterations through DES

    Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844–848

    Get PDF
    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000–3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons—Leu844, Cys845, Ala846, Leu847, and Gly848—located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844–848 exists and will be valuable in the management and genetic counseling of a significant number of individuals

    Phenotypic expansion of the BPTF-related neurodevelopmental disorder with dysmorphic facies and distal limb anomalies

    Get PDF
    Neurodevelopmental disorder with dysmorphic facies and distal limb anomalies (NEDDFL), defined primarily by developmental delay/intellectual disability, speech delay, postnatal microcephaly, and dysmorphic features, is a syndrome resulting from heterozygous variants in the dosage-sensitive bromodomain PHD finger chromatin remodeler transcription factor BPTF gene. To date, only 11 individuals with NEDDFL due to de novo BPTF variants have been described. To expand the NEDDFL phenotypic spectrum, we describe the clinical features in 25 novel individuals with 20 distinct, clinically relevant variants in BPTF, including four individuals with inherited changes in BPTF. In addition to the previously described features, individuals in this cohort exhibited mild brain abnormalities, seizures, scoliosis, and a variety of ophthalmologic complications. These results further support the broad and multi-faceted complications due to haploinsufficiency of BPTF.Genetics of disease, diagnosis and treatmen

    Syndromic disorders caused by gain-of-function variants in KCNH1, KCNK4, and KCNN3-a subgroup of K<sup>+</sup> channelopathies.

    No full text
    Decreased or increased activity of potassium channels caused by loss-of-function and gain-of-function (GOF) variants in the corresponding genes, respectively, underlies a broad spectrum of human disorders affecting the central nervous system, heart, kidney, and other organs. While the association of epilepsy and intellectual disability (ID) with variants affecting function in genes encoding potassium channels is well known, GOF missense variants in K &lt;sup&gt;+&lt;/sup&gt; channel encoding genes in individuals with syndromic developmental disorders have only recently been recognized. These syndromic phenotypes include Zimmermann-Laband and Temple-Baraitser syndromes, caused by dominant variants in KCNH1, FHEIG syndrome due to dominant variants in KCNK4, and the clinical picture associated with dominant variants in KCNN3. Here we review the presentation of these individuals, including five newly reported with variants in KCNH1 and three additional individuals with KCNN3 variants, all variants likely affecting function. There is notable overlap in the phenotypic findings of these syndromes associated with dominant KCNN3, KCNH1, and KCNK4 variants, sharing developmental delay and/or ID, coarse facial features, gingival enlargement, distal digital hypoplasia, and hypertrichosis. We suggest to combine the phenotypes and define a new subgroup of potassium channelopathies caused by increased K &lt;sup&gt;+&lt;/sup&gt; conductance, referred to as syndromic neurodevelopmental K &lt;sup&gt;+&lt;/sup&gt; channelopathies due to dominant variants in KCNH1, KCNK4, or KCNN3

    Pathogenic variants in E3 ubiquitin ligase RLIM/RNF12 lead to a syndromic X-linked intellectual disability and behavior disorder

    No full text
    Published online: 4 May 2018RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.Suzanna G. M. Frints ... Eric Haan, Marie Shaw, Renee Carroll, Kathryn Friend, Jan Liebelt, Lynne Hobson ... Jozef Gecz ... et al

    <i>PIK3CA</i>-associated developmental disorders exhibit distinct classes of mutations with variable expression and tissue distribution.

    Get PDF
    Mosaicism is increasingly recognized as a cause of developmental disorders with the advent of next-generation sequencing (NGS). Mosaic mutations of &lt;i&gt;PIK3CA&lt;/i&gt; have been associated with the widest spectrum of phenotypes associated with overgrowth and vascular malformations. We performed targeted NGS using 2 independent deep-coverage methods that utilize molecular inversion probes and amplicon sequencing in a cohort of 241 samples from 181 individuals with brain and/or body overgrowth. We identified &lt;i&gt;PIK3CA&lt;/i&gt; mutations in 60 individuals. Several other individuals ( &lt;i&gt;n&lt;/i&gt; = 12) were identified separately to have mutations in &lt;i&gt;PIK3CA&lt;/i&gt; by clinical targeted-panel testing ( &lt;i&gt;n&lt;/i&gt; = 6), whole-exome sequencing ( &lt;i&gt;n&lt;/i&gt; = 5), or Sanger sequencing ( &lt;i&gt;n&lt;/i&gt; = 1). Based on the clinical and molecular features, this cohort segregated into three distinct groups: (a) severe focal overgrowth due to low-level but highly activating (hotspot) mutations, (b) predominantly brain overgrowth and less severe somatic overgrowth due to less-activating mutations, and (c) intermediate phenotypes (capillary malformations with overgrowth) with intermediately activating mutations. Sixteen of 29 &lt;i&gt;PIK3CA&lt;/i&gt; mutations were novel. We also identified constitutional &lt;i&gt;PIK3CA&lt;/i&gt; mutations in 10 patients. Our molecular data, combined with review of the literature, show that &lt;i&gt;PIK3CA&lt;/i&gt; -related overgrowth disorders comprise a discontinuous spectrum of disorders that correlate with the severity and distribution of mutations

    Ribosome levels selectively regulate translation and lineage commitment in human hematopoiesis

    No full text
    Blood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease. We show that in DBA, the pool of available ribosomes is limited, while ribosome composition remains constant. Surprisingly, this global reduction in ribosome levels more profoundly alters translation of a select subset of transcripts. We show how the reduced translation of select transcripts in HSPCs can impair erythroid lineage commitment, illuminating a regulatory role for ribosome levels in cellular differentiation

    Filamin A mutations cause periventricular heterotopia with Ehlers-Danlos syndrome

    No full text
    Objective: To define the clinical, radiologic, and genetic features of periventricular heterotopia (PH) with Ehlers-Danlos syndrome (EDS). Methods: Exonic sequencing and single stranded conformational polymorphism (SSCP) analysis was performed on affected individuals. Linkage analysis using microsatellite markers on the X-chromosome was performed on a single pedigree. Western blotting evaluated for loss of filamin A ( FLNA) protein and Southern blotting assessed for any potential chromosome rearrangement in this region. Results: The authors report two familial cases and nine additional sporadic cases of the EDS-variant form of PH, which is characterized by nodular brain heterotopia, joint hypermobility, and development of aortic dilatation in early adulthood. MRI typically demonstrated bilateral nodular PH, indistinguishable from PH due to FLNA mutations. Exonic sequencing or SSCP analyses of FLNA revealed a 2762 delG single base pair deletion in one affected female. Another affected female harbored a C116 single point mutation, resulting in an A39G change. A third affected female had a 4147 delG single base pair deletion. One pedigree with no detectable exonic mutation demonstrated positive linkage to the FLNA locus Xq28, an affected individual in this family also had no detectable FLNA protein, but no chromosomal rearrangement was detected. Conclusion: These results suggest that the Ehlers-Danlos variant of periventricular heterotopia ( PH), in part, represents an overlapping syndrome with X-linked dominant PH due to filamin A mutations
    corecore