515 research outputs found

    Sustainable polycarbonate adhesives for dry and aqueous conditions with thermoresponsive properties

    Get PDF
    Pressure sensitive adhesives are ubiquitous in commodity products such as tapes, bandages, labels, packaging, and insulation. With single use plastics comprising almost half of yearly plastic production, it is essential that the design, synthesis, and decomposition products of future materials, including polymer adhesives, are within the context of a healthy ecosystem along with comparable or superior performance to conventional materials. Here we show a series of sustainable polymeric adhesives, with an eco-design, that perform in both dry and wet environments. The terpolymerization of propylene oxide, glycidyl butyrate, and CO2, catalyzed by a cobalt salen complex bearing a quaternary ammonium salt, yields the poly(propylene-co-glycidyl butyrate carbonate)s (PPGBC)s. This polymeric adhesive system, composed of environmentally benign building blocks, implements carbon dioxide sequestration techniques, poses minimal environmental hazards, exhibits varied peel strengths from scotch tape to hot-melt wood-glue, and adheres to metal, glass, wood, and TeflonŽ surfaces.Published versio

    Synthesis of Bioinspired Carbohydrate Amphiphiles that Promote and Inhibit Biofilms

    Get PDF
    The synthesis and characterization of a new class of bioinspired carbohydrate amphiphiles that modulate Pseudomonas aeruginosa biofilm formation are reported. The carbohydrate head is an enantiopure poly-amido-saccharide (PAS) prepared by a controlled anionic polymerization of β-lactam monomers derived from either glucose or galactose. The supramolecular assemblies formed by PAS amphiphiles are investigated in solution using fluorescence assays and dynamic light scattering. Dried samples are investigated using X-ray, infrared spectroscopy, and transmission electron microscopy. Additionally, the amphiphiles are evaluated for their ability to modulate biofilm formation by the Gram-negative bacterium Pseudomonas aeruginosa. Remarkably, from a library of eight amphiphiles, we identify a structure that promotes biofilm formation and two structures that inhibit biofilm formation. Using biological assays and electron microscopy, we relate the chemical structure of the amphiphiles to the observed activity. Materials that modulate the formation of biofilms by bacteria are important both as research tools for microbiologists to study the process of biofilm formation and for their potential to provide new drug candidates for treating biofilm-associated infections

    Cationic agent contrast-enhanced computed tomography imaging of cartilage correlates with the compressive modulus and coefficient of friction

    Get PDF
    SummaryObjectiveThe aim of this study is to evaluate whether contrast-enhanced computed tomography (CECT) attenuation, using a cationic contrast agent (CA4+), correlates with the equilibrium compressive modulus (E) and coefficient of friction (Ο) of ex vivo bovine articular cartilage.MethodsCorrelations between CECT attenuation and E (Group 1, n = 12) and Ο (Group 2, n = 10) were determined using 7 mm diameter bovine osteochondral plugs from the stifle joints of six freshly slaughtered, skeletally mature cows. The equilibrium compressive modulus was measured using a four-step, unconfined, compressive stress-relaxation test, and the coefficients of friction were determined from a torsional friction test. Following mechanical testing, samples were immersed in CA4+, imaged using ΟCT, rinsed, and analyzed for glycosaminoglycan (GAG) content using the 1,9-dimethylmethylene blue (DMMB) assay.ResultsThe CECT attenuation was positively correlated with the GAG content of bovine cartilage (R2 = 0.87, P < 0.0001 for Group 1 and R2 = 0.74, P = 0.001 for Group 2). Strong and significant positive correlations were observed between E and GAG content (R2 = 0.90, P < 0.0001) as well as CECT attenuation and E (R2 = 0.90, P < 0.0001). The CECT attenuation was negatively correlated with the three coefficients of friction: CECT vs Οstatic (R2 = 0.71, P = 0.002), CECT vs Οstatic_equilibrium (R2 = 0.79, P < 0.001), and CECT vs Οkinetic (R2 = 0.69, P = 0.003).ConclusionsCECT with CA4+ is a useful tool for determining the mechanical properties of ex vivo cartilage tissue as the attenuation significantly correlates with the compressive modulus and coefficient of friction

    Attaching different kinds of proteinaceous nanospheres to a variety of fabrics using ultrasound radiation

    Get PDF
    The application of a rapid, non-destructive, cost-effective technique such as ultrasonic emulsification for the coating of different textiles was explored. The technical benefits for this research were the generation of multifunctional materials and their combinations through environmentally friendly processing technologies. We have shown for the first time that ultrasonic waves can be used to coat proteinaceous micro- and nanospheres (PM) of BSA (Bovine Serum Albumin) protein and casein on the surface of cotton and polyester (PE) fabrics. The creation and the anchoring of the microbubbles to the fabrics were performed by a one step reaction, and the process is usually stopped after 3 min. The PM of bovine serum albumin (BSA) bonded to cotton and polyester fabrics has shown stability for ~9 months. The PMs were shown to be attached more strongly to the polyester than to the cotton, and sustained stronger washing conditions on PE. The diameter of the BSA and the casein spheres on cotton was in the range of 0.8–1.0 µm, while on the PE it varied between 60 and 120 nm.This research, was carried out as part of the activities of the LIDWINE Consortium, Contract No NMP2-CT-2006-026741 LIDWINE is an IP Project of the 6th EC Progra

    Peptide-PEG Amphiphiles as Cytophobic Coatings for Mammalian and Bacterial Cells

    Get PDF
    SummaryAmphiphilic macromolecules containing a polystyrene-adherent peptide domain and a cell-repellent poly(ethylene glycol) domain were designed, synthesized, and evaluated as a cytophobic surface coating. Such cytophobic, or cell-repellent, coatings are of interest for varied medical and biotechnological applications. The composition of the polystyrene binding peptide domain was identified using an M13 phage display library. ELISA and atomic force spectroscopy were used to evaluate the binding affinity of the amphiphile peptide domain to polystyrene. When coated onto polystyrene, the amphiphile reduced cell adhesion of two distinct mammalian cell lines and pathogenic Staphylococcus aureus strains

    Sonochemically-induced spectral shift as a probe of green fluorescent protein release from nano capsules

    Get PDF
    Encapsulation in the form of micro and nanocapsules is an attractive route for controlling the delivery and release of active proteins and peptides. Many approaches exist to probe the morphology of such capsules as well as their mechanisms of formation. By contrast, the release of proteins from such components in a complex biological environment has been challenging to probe directly. In this paper we show that the spectral differences between green fluorescent protein (GFP) in capsules and in its free form can be used to monitor in situ the release of the protein from the confinement of capsules. These findings represent a new route towards engineering the spectral characteristics of GFP through physical rather than chemical means. We demonstrate the use of GFP protein capsules for monitoring in real time the release of protein in live cells by exposing rat L6 myotubes to protein capsules. The GFP spheres with a blue fluorescent signal dissociate inside the L6 myotubes to individual GFP molecules with a change in fluorescent signal from blue to green. These sensitive spectral characteristics enabled us to resolve the dissociation of capsules inside the cells in both time and space. We discuss the implications of our results for quantifying parameters crucial for the delivery of proteins in biological environments

    Micro-Scale Distribution of CA4+ in Ex vivo Human Articular Cartilage Detected with Contrast-Enhanced Micro-Computed Tomography Imaging

    Get PDF
    Contrast-enhanced micro-computed tomography (CE mu CT) with cationic and anionic contrast agents reveals glycosaminoglycan (GAG) content and distribution in articular cartilage (AC). The advantage of using cationic stains (e.g., CA4+) compared to anionic stains (e.g., Hexabrix (R)), is that it distributes proportionally with GAGs, while anionic stain distribution in AC is inversely proportional to the GAG content. To date, studies using cationic stains have been conducted with sufficient resolution to study its distributions on the macro-scale, but with insufficient resolution to study its distributions on the micro-scale. Therefore, it is not known whether the cationic contrast agents accumulate in extra/pericellular matrix and if they interact with chondrocytes. The insufficient resolution has also prevented to answer the question whether CA4+ accumulation in chondrons could lead to an erroneous quantification of GAG distribution with low-resolution mu CT setups. In this study, we use high-resolution mu CT to investigate whether CA4+ accumulates in chondrocytes, and further, to determine whether it affects the low-resolution ex vivo mu CT studies of CA4+ stained human AC with varying degree of osteoarthritis. Human osteochondral samples were immersed in three different concentrations of CA4+ (3 mgI/ml, 6 mgI/ml, and 24 mgI/ml) and imaged with high-resolution mu CT at several timepoints. Different uptake diffusion profiles of CA4+ were observed between the segmented chondrons and the rest of the tissue. While the X-ray -detected CA4+ concentration in chondrons was greater than in the rest of the AC, its contribution to the uptake into the whole tissue was negligible and in line with macro-scale GAG content detected from histology. The efficient uptake of CA4+ into chondrons and surrounding territorial matrix can be explained by the micro-scale distribution of GAG content. CA4+ uptake in chondrons occurred regardless of the progression stage of osteoarthritis in the samples and the relative difference between the interterritorial matrix and segmented chondron area was less than 4%. To conclude, our results suggest that GAG quantification with CE mu CT is not affected by the chondron uptake of CA4+. This further confirms the use of CA4+ for macro-scale assessment of GAG throughout the AC, and highlight the capability of studying chondron properties in 3D at the micro scale.Peer reviewe

    Microspheres of mixed proteins

    Get PDF
    This paper describes the synthesis of mixed proteinaceous microspheres (MPMs) by the sonochemical method. The current fundamental research follows the research of Suslick and co-workers who have developed a method by which high-intensity ultrasound is used to make aqueous suspensions of proteinaceous microcapsules filled with water-insoluble liquids.1 By using high-intensity ultrasound, we have synthesized microspheres made of a few different proteins. The three proteins used in the current experiments are bovine serum albumin (BSA), green fluorescent protein (GFP), and cyan fluorescent protein–glucose binding protein–yellow fluorescent fused protein (CFP-GBP-YFP). The two synthesized microspheres made of mixed proteins are BSA-GFP and BSA-(CFP-GBP-YFP). This paper presents the characterization of the sonochemically produced microspheres of mixed proteins. It also provides an estimate of the efficiency of the sonochemical process in converting the native proteins to microspheres
    • …
    corecore