1,464 research outputs found

    Polarized Gamma-ray Emission from the Galactic Black Hole Cygnus X-1

    Get PDF
    Because of their inherently high flux allowing the detection of clear signals, black hole X-ray binaries are interesting candidates for polarization studies, even if no polarization signals have been observed from them before. Such measurements would provide further detailed insight into these sources' emission mechanisms. We measured the polarization of the gamma-ray emission from the black hole binary system Cygnus X-1 with the INTEGRAL/IBIS telescope. Spectral modeling of the data reveals two emission mechanisms: The 250-400 keV data are consistent with emission dominated by Compton scattering on thermal electrons and are weakly polarized. The second spectral component seen in the 400keV-2MeV band is by contrast strongly polarized, revealing that the MeV emission is probably related to the jet first detected in the radio band.Comment: 11 pages, 3 figures, to be published in Science in April 22nd 2011, available on Science Express Web site (March 24th edition

    Predicting morphotropic phase boundary locations and transition temperatures in Pb- and Bi-based perovskite solid solutions from crystal chemical data and first-principles calculations

    Full text link
    Using data obtained from first-principles calculations, we show that the position of the morphotropic phase boundary (MPB) and transition temperature at MPB in ferroelectric perovskite solutions can be predicted with quantitative accuracy from the properties of the constituent cations. We find that the mole fraction of PbTiO3_3 at MPB in Pb(B'B'')O3_3-PbTiO3_3, BiBO3_3-PbTiO3_3 and Bi(B'B'')O3_3-PbTiO3_3 exhibits a linear dependence on the ionic size (tolerance factor) and the ionic displacements of the B-cations as found by density functional theory calculations. This dependence is due to competition between the local repulsion and A-cation displacement alignment interactions. Inclusion of first-principles displacement data also allows accurate prediction of transiton temperatures at the MPB. The obtained structure-property correlations are used to predict morphotropic phase boundaries and transition temperatures in as yet unsynthesized solid solutions.Comment: Accepted for publication in J. Appl. Phy

    Variability in high-mass X-ray binaries

    Get PDF
    Strongly magnetized, accreting neutron stars show periodic and aperiodic variability over a wide range of time scales. By obtaining spectral and timing information on these different time scales, we can have a closer look into the physics of accretion close to the neutron star and the properties of the accreted material. One of the most prominent time scales is the strong pulsation, i.e., the rotation period of the neutron star itself. Over one rotation, our view of the accretion column and the X-ray producing region changes significantly. This allows us to sample different physical conditions within the column but at the same time requires that we have viewing-angle-resolved models to properly describe them. In wind-fed high-mass X-ray binaries, the main source of aperiodic variability is the clumpy stellar wind, which leads to changes in the accretion rate (i.e., luminosity) as well as absorption column. This variability allows us to study the behavior of the accretion column as a function of luminosity, as well as to investigate the structure and physical properties of the wind, which we can compare to winds in isolated stars.Comment: 6 pages, 4 figures, accepted for publication in Astronomische Nachrichten (proceedings of the XMM-Newton Workshop 2019

    Spectral state dependence of the 0.4-2 MeV polarized emission in Cygnus X-1 seen with INTEGRAL/IBIS, and links with the AMI radio data

    Get PDF
    Polarization of the >~400 keV hard tail of the microquasar Cygnus X-1 has been independently reported by INTEGRAL/IBIS, and INTEGRAL/SPI and interpreted as emission from a compact jet. These conclusions were, however, based on the accumulation of all INTEGRAL data regardless of the spectral state. We utilize additional INTEGRAL exposure accumulated until December 2012, and include the AMI/Ryle (15 GHz) radio data in our study. We separate the observations into hard, soft, and intermediate/transitional states and detect radio emission from a compact jet in hard and intermediate states, but not in the soft. The 10-400 keV INTEGRAL (JEM-X and IBIS) state resolved spectra are well modeled with thermal Comptonization and reflection components. We detect a hard tail in the 0.4-2 MeV range for the hard state only. We extract the state dependent polarigrams of Cyg X-1, which all are compatible to no or undetectable level of polarization except in 400-2000 keV range in the hard state where the polarization fraction is 75±\pm32 % and the polarization angle 40.0 +-14 deg. An upper limit on the 0.4-2 MeV soft state polarization fraction is 70%. Due to the short exposure, we obtain no meaningful constraint for the intermediate state. The likely detection of a >400 keV polarized tail in the hard state, together with the simultaneous presence of a radio jet, reinforce the notion of a compact jet origin of the 400 keV emission.Comment: 13 pages, 5 figures, accepted for publication in Ap

    Pigs and Packers

    Get PDF
    This study presents us with a number of issues that add complexity to the taken-for-granted practices of teaching immigrant children in the US. Furthermore, by contextualizing the events and dialogs within the larger contexts and contradictory discourses of the purposes of schooling vis-à-vis the globalizing dimension of ethnoscapes, the debate forces us to engage in theorizing within the discourses of correspondence (reproduction), resistance, agency, and hope. In what follows we engage in conversation where we each take turns interrogating, problematizing, and playing the role of the provocateur in order to elicit dialog among us and to advance the tremendous ideas put forth in Pigs and Packers

    Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis

    Full text link
    Protein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144227/1/cpcb2103.pd

    Visualization of Protein Interactions in Living Cells Using Bimolecular Fluorescence Complementation (BiFC) Analysis

    Full text link
    Protein interactions integrate stimuli from different signaling pathways and developmental programs. Bimolecular fluorescence complementation (BiFC) analysis has been developed for visualization of protein interactions in living cells. This approach is based on complementation between two fragments of a fluorescent protein when they are brought together by an interaction between proteins fused to the fragments, and it enables visualization of the subcellular locations of protein interactions in the normal cellular environment. It can be used for the analysis of many protein interactions and does not require information about the structures of the interaction partners. A multicolor BiFC approach has been developed for simultaneous visualization of interactions with multiple alternative partners in the same cell, based on complementation between fragments of engineered fluorescent proteins that produce bimolecular fluorescent complexes with distinct spectral characteristics. This enables comparison of subcellular distributions of different protein complexes in the same cell and allows analysis of competition between mutually exclusive interaction partners.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143753/1/cpcb2103.pd

    Relationship between Local Structure and Relaxor Behavior in Perovskite Oxides

    Get PDF
    Despite intensive investigations over the past five decades, the microscopic origins of the fascinating dielectric properties of ABO3 relaxor ferroelectrics are currently poorly understood. Here, we show that the frequency dispersion that is the hallmark of relaxor behavior is quantitatively related to the crystal chemical characteristics of the solid solution. Density functional theory is used in conjunction with experimental determination of cation arrangement to identify the 0 K structural motifs. These are then used to parametrize a simple phenomenological Landau theory that predicts the universal dependence of frequency dispersion on the solid solution cation arrangement and off-center cation displacements

    Structure and dielectric response in the high TcT_c ferroelectric Bi(Zn,Ti)O3_3-PbTiO3_3 solid solutions

    Full text link
    Theoretical {\em ab initio} and experimental methods were used to investigate the xxBi(Zn,Ti)O3_3-(1-xx)PbTiO3_3 (BZT-PT) solid solution. We find that hybridization between Zn 4pp and O 2pp orbitals allows the formation of short, covalent Zn-O bonds, enabling favorable coupling between A-site and B-site displacements. This leads to large polarization, strong tetragonality and an elevated ferroelectric to paraelectric phase transition temperature. nhomogeneities in local structure near the 90^\circ domain boundaries can be deduced from the asymetric peak broadening in the neutron and x-ray diffraction spectra. These extrinsic effects make the ferroelectric to paraelectric phase transition diffuse in BZT-PT solid solutions
    corecore