114 research outputs found

    Dynamics of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) tree architecture and scion/rootstock interaction

    Get PDF
    La importancia económica del almendro (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) ha crecido en los últimos años, especialmente en la península ibérica y países mediterráneos, y en España, la producción ha aumentado significativamente. Sin embargo, aunque es el primer país en área dedicada a su cultivo, está todavía muy lejos de EEUU en términos de producción de almendra. Por ello, se han introducido nuevos sistemas de cultivo en el área mediterránea, que requieren de variedades con un hábito erecto, ramificaciones productivas y un bajo vigor. Debido a esto, ha adquirido relevancia comprender que procesos biológicos modulan la estructura tridimensional del árbol. Todas las características que la definen se engloban en el término arquitectura del árbol, la cual está regulada por varios factores, desde ambientales hasta otros relacionados con el manejo del cultivo, como la poda, los nutrientes o la elección del patrón. El objetivo de este trabajo es caracterizar los factores fisiológicos y moleculares que regulan la arquitectura del almendro, así como el efecto en la misma de la comunicación entre variedad y patrón. La participación de la familia IGT en la diversidad del hábito de crecimiento fue analizada en un conjunto de variedades de almendro y especies silvestres. Aunque en varias especies se ha descrito que regula el ángulo de las ramas y raíces, en almendro, no se ha encontrado ninguna correlación entre la variabilidad de esta familia de genes y la diversidad en hábito. La complejidad de la arquitectura del árbol, involucrando múltiples aspectos del desarrollo del árbol, ha hecho necesario establecer un protocolo de fenotipado cuantitativo enfocado a estudios moleculares. Siete parámetros fueron seleccionados como descriptores de la arquitectura del árbol y del efecto del patrón en su variabilidad. Con estos analizamos el efecto de la interacción entre variedad y patrón en treinta combinaciones con seis variedades comerciales y cinco híbridos interespecíficos. Se observó que el patrón tenía una influencia significativa en los parámetros asociados a la dominancia apical. Por otro lado, variedades con fenotipos extremos de dominancia apical (alta, ‘Isabelona’, o baja, ‘Lauranne’) se veían menos afectadas. Este efecto se transmite a la formación de ramas, viéndose alterada la producción de ramas inmediatas (silépticas) por el genotipo del patrón. Solo se observó expresión diferencial de genes en ápices de ramas en individuos de ‘Diamar’, donde existía una influencia fenotípica del patrón. Estos genes están asociados a la formación de brotes, la diferenciación de meristemos, la división celular, la reorganización de la pared celular o la captación de nutrientes. Mientras que la interacción entre variedad y patrón influye en la arquitectura de la variedad, también la variedad puede afectar al desarrollo del patrón. Observamos una prevalencia de genes expresados diferencialmente asociados a la regulación hormonal, la disponibilidad de nitrógeno o el desarrollo radicular, demostrando que la variedad puede igualmente modificar el perfil molecular del patrón. Esto ratifica la importancia de considerar el efecto mutuo que tienen variedad y patrón en la regulación de un rasgo tan complejo como la arquitectura del almendro.<br /

    Identification of genes involved in almond scion tree architecture influenced by rootstock genotype using transcriptome analysis

    Get PDF
    The emergence of almond (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) intensive and semi-intensive cropping systems has created a necessity for new almond cultivars with vigor and shape adapted to these new circumstances. Hence, it is important to unravel which mechanisms are behind the regulation of the tree three-dimensional structure, or tree architecture, and what factors may play a role, like the choice of rootstock. In this study, we have analyzed the rootstock influence on the scion transcriptome, regarding the biological processes that control almond tree architecture. Three commercial almond cultivars were grafted onto three hybrid rootstocks known to confer different architecture to the scion, resulting in nine combinations, whose gene expression in shoot tips was analyzed via RNA-Seq. We report that differences in tree architecture phenotype are correlated with differential expression of genes involved in hormonal and molecular responses associated with the regulation of apical dominance, branch formation, plant growth, cell wall formation, or nitrogen assimilation. These results highlight the importance of the rootstock choice in selecting a desirable scion architecture and in establishing almond orchards.La aparición de sistemas de cultivo intensivos y semi-intensivos de almendro (Prunus amygdalus (L.) Batsch, syn P. dulcis (Mill.)) ha creado la necesidad de nuevos cultivares de almendro con vigor y forma adaptados a estas nuevas circunstancias. Por lo tanto, es importante desentrañar qué mecanismos están detrás de la regulación de la estructura tridimensional del árbol, o arquitectura del árbol, y qué factores pueden jugar un papel, como la elección del portainjerto. En este estudio, hemos analizado la influencia del portainjerto en el transcriptoma del vástago, en relación con los procesos biológicos que controlan la arquitectura del almendro. Se injertaron tres cultivares comerciales de almendro en tres portainjertos híbridos conocidos por conferir una arquitectura diferente al vástago, dando lugar a nueve combinaciones, cuya expresión génica en las puntas de los brotes se analizó mediante RNA-Seq. Se ha observado que las diferencias en el fenotipo de la arquitectura del árbol están correlacionadas con la expresión diferencial de genes implicados en respuestas hormonales y moleculares asociadas a la regulación de la dominancia apical, la formación de ramas, el crecimiento de la planta, la formación de la pared celular o la asimilación de nitrógeno. Estos resultados subrayan la importancia de la elección del portainjerto en la selección de una arquitectura de púa deseable y en el establecimiento de huertos de almendros.Esta investigación ha sido financiada por las becas RTI- 2018-507 094210-R-100 y FPI-INIA CPD2016-0056 financiada por MCIN/AEI/ 10.13039/501100011033.Scion-rootstock interactionVigorHormonal regulationPrunus dulcisTree shapeTranscriptomicsPublishe

    VitisNet: ‘‘Omics’’ Integration through Grapevine Molecular Networks

    Get PDF
    Background: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 ‘‘Metabolic’’, 15 ‘‘Genetic Information Processing’’, 12 ‘‘Environmental Information Processing’’, 3 ‘‘Cellular Processes’’, 21 ‘‘Transport’’, and 80 ‘‘Transcription Factors’’. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu/. All VitisNet files including the manual annotation of the grape genome encompassing pathway names, individual genes, their genome identifier, and chromosome location can be accessed and downloaded from the VitisNet tab at http://vitis-dormancy.sdstate.org

    VitisNet: ‘‘Omics’’ Integration through Grapevine Molecular Networks

    Get PDF
    Background: Genomic data release for the grapevine has increased exponentially in the last five years. The Vitis vinifera genome has been sequenced and Vitis EST, transcriptomic, proteomic, and metabolomic tools and data sets continue to be developed. The next critical challenge is to provide biological meaning to this tremendous amount of data by annotating genes and integrating them within their biological context. We have developed and validated a system of Grapevine Molecular Networks (VitisNet). Methodology/Principal Findings: The sequences from the Vitis vinifera (cv. Pinot Noir PN40024) genome sequencing project and ESTs from the Vitis genus have been paired and the 39,424 resulting unique sequences have been manually annotated. Among these, 13,145 genes have been assigned to 219 networks. The pathway sets include 88 ‘‘Metabolic’’, 15 ‘‘Genetic Information Processing’’, 12 ‘‘Environmental Information Processing’’, 3 ‘‘Cellular Processes’’, 21 ‘‘Transport’’, and 80 ‘‘Transcription Factors’’. The quantitative data is loaded onto molecular networks, allowing the simultaneous visualization of changes in the transcriptome, proteome, and metabolome for a given experiment. Conclusions/Significance: VitisNet uses manually annotated networks in SBML or XML format, enabling the integration of large datasets, streamlining biological functional processing, and improving the understanding of dynamic processes in systems biology experiments. VitisNet is grounded in the Vitis vinifera genome (currently at 8x coverage) and can be readily updated with subsequent updates of the genome or biochemical discoveries. The molecular network files can be dynamically searched by pathway name or individual genes, proteins, or metabolites through the MetNet Pathway database and web-portal at http://metnet3.vrac.iastate.edu

    Tissue-specific mRNA expression profiling in grape berry tissues

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Berries of grape (<it>Vitis vinifera</it>) contain three major tissue types (skin, pulp and seed) all of which contribute to the aroma, color, and flavor characters of wine. The pericarp, which is composed of the exocarp (skin) and mesocarp (pulp), not only functions to protect and feed the developing seed, but also to assist in the dispersal of the mature seed by avian and mammalian vectors. The skin provides volatile and nonvolatile aroma and color compounds, the pulp contributes organic acids and sugars, and the seeds provide condensed tannins, all of which are important to the formation of organoleptic characteristics of wine. In order to understand the transcriptional network responsible for controlling tissue-specific mRNA expression patterns, mRNA expression profiling was conducted on each tissue of mature berries of <it>V. vinifera </it>Cabernet Sauvignon using the Affymetrix GeneChip<sup>® </sup><it>Vitis </it>oligonucleotide microarray ver. 1.0. In order to monitor the influence of water-deficit stress on tissue-specific expression patterns, mRNA expression profiles were also compared from mature berries harvested from vines subjected to well-watered or water-deficit conditions.</p> <p>Results</p> <p>Overall, berry tissues were found to express approximately 76% of genes represented on the <it>Vitis </it>microarray. Approximately 60% of these genes exhibited significant differential expression in one or more of the three major tissue types with more than 28% of genes showing pronounced (2-fold or greater) differences in mRNA expression. The largest difference in tissue-specific expression was observed between the seed and pulp/skin. Exocarp tissue, which is involved in pathogen defense and pigment production, showed higher mRNA abundance relative to other berry tissues for genes involved with flavonoid biosynthesis, pathogen resistance, and cell wall modification. Mesocarp tissue, which is considered a nutritive tissue, exhibited a higher mRNA abundance of genes involved in cell wall function and transport processes. Seeds, which supply essential resources for embryo development, showed higher mRNA abundance of genes encoding phenylpropanoid biosynthetic enzymes, seed storage proteins, and late embryogenesis abundant proteins. Water-deficit stress affected the mRNA abundance of 13% of the genes with differential expression patterns occurring mainly in the pulp and skin. In pulp and seed tissues transcript abundance in most functional categories declined in water-deficit stressed vines relative to well-watered vines with transcripts for storage proteins and novel (no-hit) functional assignments being over represented. In the skin of berries from water-deficit stressed vines, however, transcripts from several functional categories including general phenypropanoid and ethylene metabolism, pathogenesis-related responses, energy, and interaction with the environment were significantly over-represented.</p> <p>Conclusion</p> <p>These results revealed novel insights into the tissue-specific expression mRNA expression patterns of an extensive repertoire of genes expressed in berry tissues. This work also establishes an extensive catalogue of gene expression patterns for future investigations aimed at the dissection of the transcriptional regulatory hierarchies that govern tissue-specific expression patterns associated with tissue differentiation within berries. These results also confirmed that water-deficit stress has a profound effect on mRNA expression patterns particularly associated with the biosynthesis of aroma and color metabolites within skin and pulp tissues that ultimately impact wine quality.</p

    Comparative Analysis of Grapevine Whole-genome Gene Predictions, Functional Annotation, Categorization and Integration of the Predicted Gene Sequences

    Get PDF
    Background: The first draft assembly and gene prediction of the grapevine genome (8X base coverage) was made available to the scientific community in 2007, and functional annotation was developed on this gene prediction. Since then additional Sanger sequences were added to the 8X sequences pool and a new version of the genomic sequence with superior base coverage (12X) was produced. Results: In order to more efficiently annotate the function of the genes predicted in the new assembly, it is important to build on as much of the previous work as possible, by transferring 8X annotation of the genome to the 12X version. The 8X and 12X assemblies and gene predictions of the grapevine genome were compared to answer the question, “Can we uniquely map 8X predicted genes to 12X predicted genes?” The results show that while the assemblies and gene structure predictions are too different to make a complete mapping between them, most genes (18,725) showed a one-to-one relationship between 8X predicted genes and the last version of 12X predicted genes. In addition, reshuffled genomic sequence structures appeared. These highlight regions of the genome where the gene predictions need to be taken with caution. Based on the new grapevine gene functional annotation and in-depth functional categorization, twenty eight new molecular networks have been created for VitisNet while the existing networks were updated. Conclusions: The outcomes of this study provide a functional annotation of the 12X genes, an update of VitisNet, the system of the grapevine molecular networks, and a new functional categorization of genes

    Transcript and metabolite analysis in Trincadeira cultivar reveals novel information regarding the dynamics of grape ripening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Grapes (<it>Vitis vinifera </it>L.) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to the onset of ripening of nonclimacteric fruits is not fully understood which is further complicated in grapes due to seasonal and cultivar specific variation. The Portuguese wine variety Trincadeira gives rise to high quality wines but presents extremely irregular berry ripening among seasons probably due to high susceptibility to abiotic and biotic stresses.</p> <p>Results</p> <p>Ripening of Trincadeira grapes was studied taking into account the transcriptional and metabolic profilings complemented with biochemical data. The mRNA expression profiles of four time points spanning developmental stages from pea size green berries, through <it>véraison </it>and mature berries (EL 32, EL 34, EL 35 and EL 36) and in two seasons (2007 and 2008) were compared using the Affymetrix GrapeGen<sup>® </sup>genome array containing 23096 probesets corresponding to 18726 unique sequences. Over 50% of these probesets were significantly differentially expressed (1.5 fold) between at least two developmental stages. A common set of modulated transcripts corresponding to 5877 unigenes indicates the activation of common pathways between years despite the irregular development of Trincadeira grapes. These unigenes were assigned to the functional categories of "metabolism", "development", "cellular process", "diverse/miscellanenous functions", "regulation overview", "response to stimulus, stress", "signaling", "transport overview", "xenoprotein, transposable element" and "unknown". Quantitative RT-PCR validated microarrays results being carried out for eight selected genes and five developmental stages (EL 32, EL 34, EL 35, EL 36 and EL 38). Metabolic profiling using <sup>1</sup>H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, amino acid and sugar metabolism as well as secondary metabolism. These results were integrated with transcriptional profiling obtained using genome array to provide new information regarding the network of events leading to grape ripening.</p> <p>Conclusions</p> <p>Altogether the data obtained provides the most extensive survey obtained so far for gene expression and metabolites accumulated during grape ripening. Moreover, it highlighted information obtained in a poorly known variety exhibiting particular characteristics that may be cultivar specific or dependent upon climatic conditions. Several genes were identified that had not been previously reported in the context of grape ripening namely genes involved in carbohydrate and amino acid metabolisms as well as in growth regulators; metabolism, epigenetic factors and signaling pathways. Some of these genes were annotated as receptors, transcription factors, and kinases and constitute good candidates for functional analysis in order to establish a model for ripening control of a non-climacteric fruit.</p

    Koolrabi : rassenproef 1e beoordeling stookteelt en 1 beoordeling hetelucht voorjaar 1980

    Get PDF
    <p><b>Copyright information:</b></p><p>Taken from "Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development"</p><p>http://www.biomedcentral.com/1471-2164/8/429</p><p>BMC Genomics 2007;8():429-429.</p><p>Published online 22 Nov 2007</p><p>PMCID:PMC2220006.</p><p></p>me array and by real-time RT-PCR. Data were from 11 probe sets across seven developmental stages. The difference in the number of PCR cycles required to produce the same amount of product is plotted against the logexpression ratio averaged over the first time point. The linear regression line was constrained to pass through the origin. Grey solid square (1615402_at, TC56083)-ferulate-5-hydroxylase, Apricot solid triangle (1606794_at, TC63891)-osmotin precursor, red solid triangle (1616700_at, TC53526)-sucrose synthase, orange solid diamond (1607760_at, TC51695) flavonoid-3'5'-hydroxylase, light green solid round (1611650_at, TC57228)-WRKY7, dark green open square (1616880_at, TC54034)-cinnamoyl alcohol dehydrogenase, dark blue open triangle (1613896_at, TC62182)-nitrate/chloride transporter), blue open triangle (1615722_s_at, TC51776)-aquaporin PIP1.1, lavender open diamond (1611342_at, TC55943)-serine/threonine kinase, pink open circle (1612132_s_at, TC68311)-protein phosphatase 2C, brown cross (1614931_at, TC61058)-MYB transcription factor

    VitisNet 12X: 4.2 Cell Motility PDF Files

    No full text
    corecore