2,432 research outputs found

    G-flux and Spectral Divisors

    Get PDF
    We propose a construction of G-flux in singular elliptic Calabi-Yau fourfold compactifications of F-theory, which in the local limit allow a spectral cover description. The main tool of construction is the so-called spectral divisor in the resolved Calabi-Yau geometry, which in the local limit reduces to the Higgs bundle spectral cover. We exemplify the workings of this in the case of an E_6 singularity by constructing the resolved geometry, the spectral divisor and in the local limit, the spectral cover. The G-flux constructed with the spectral divisor is shown to be equivalent to the direct construction from suitably quantized linear combinations of holomorphic surfaces in the resolved geometry, and in the local limit reduces to the spectral cover flux.Comment: 30 page

    Linking forest cover, soil erosion and mire hydrology to late-Holocene human activity and climate in NW Spain

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License (http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (http://www.uk.sagepub.com/aboutus/openaccess.htm).This article has been made available through the Brunel Open Access Publishing Fund.Forest clearance is one of the main drivers of soil erosion and hydrological changes in mires, although climate may also play a significant role. Because of the wide range of factors involved, understanding these complex links requires long-term multi-proxy approaches and research on the best proxies to focus. A peat core from NW Spain (Cruz do Bocelo mire), spanning the last ~3000 years, has been studied at high resolution by physical (density and loss on ignition (LOI)), geochemical (elemental composition) and palynological (pollen and non-pollen palynomorphs) analyses. Proxies related to mineral matter fluxes from the catchment (lithogenic tracers, Glomus and Entorrhiza), rainfall (Bromine), mire hydrology (HdV-18), human pressure (Cerealia-type, nitrophilous taxa and coprophilous fungi) and forest cover (mesophilous tree taxa) were the most useful to reconstruct the evolution of the mire and its catchment. Forest clearance for farming was one of the main drivers of environmental change from at least the local Iron Age (~2685 cal. yr BP) onwards. The most intense phase of deforestation occurred during Roman and Germanic times and the late Middle Ages. During these phases, the entire catchment was affected, resulting in enhanced soil erosion and severe hydrological modifications of the mire. Climate, especially rainfall, may have also accelerated these processes during wetter periods. However, it is noteworthy that the hydrology of the mire seems to have been insensitive to rainfall variations when mesophilous forest dominated. Abrupt changes were only detected once intense forest clearance commenced during the Iron Age/Roman transition (~2190 cal. yr BP) phase, which represented a tipping point in catchment's ability to buffer impacts. Overall, our findings highlight the importance of studying ecosystems' long-term trajectories and catchment-wide processes when implementing mire habitat protection measures.This work was funded by the projects CGL2010-20672 (Plan Nacional I+D+i, Spanish Ministry of Science and Innovation) and 10PXIB200182PR (General Directorate of I+D, Xunta de Galicia). N Silva-Sánchez and L López-Merino are currently supported by a FPU predoctoral scholarship (AP2010-3264) funded by the Spanish Government and a MINT postdoctoral fellowship funded by the Brunel Institute for the Environment, respectively

    Massive Abelian Gauge Symmetries and Fluxes in F-theory

    Get PDF
    F-theory compactified on a Calabi-Yau fourfold naturally describes non-Abelian gauge symmetries through the singularity structure of the elliptic fibration. In contrast Abelian symmetries are more difficult to study because of their inherently global nature. We argue that in general F-theory compactifications there are massive Abelian symmetries, such as the uplift of the Abelian part of the U(N) gauge group on D7-branes, that arise from non-Kahler resolutions of the dual M-theory setup. The four-dimensional F-theory vacuum with vanishing expectation values for the gauge fields corresponds to the Calabi-Yau limit. We propose that fluxes that are turned on along these U(1)s are uplifted to non-harmonic four-form fluxes. We derive the effective four-dimensional gauged supergravity resulting from F-theory compactifications in the presence of the Abelian gauge factors including the effects of possible fluxes on the gauging, tadpoles and matter spectrum.Comment: 49 page

    Wavefunctions and the Point of E8 in F-theory

    Get PDF
    In F-theory GUTs interactions between fields are typically localised at points of enhanced symmetry in the internal dimensions implying that the coefficient of the associated operator can be studied using a local wavefunctions overlap calculation. Some F-theory SU(5) GUT theories may exhibit a maximum symmetry enhancement at a point to E8, and in this case all the operators of the theory can be associated to the same point. We take initial steps towards the study of operators in such theories. We calculate wavefunctions and their overlaps around a general point of enhancement and establish constraints on the local form of the fluxes. We then apply the general results to a simple model at a point of E8 enhancement and calculate some example operators such as Yukawa couplings and dimension-five couplings that can lead to proton decay.Comment: 46 page

    A Global SU(5) F-theory model with Wilson line breaking

    Full text link
    We engineer compact SU(5) Grand Unified Theories in F-theory in which GUT-breaking is achieved by a discrete Wilson line. Because the internal gauge field is flat, these models avoid the high scale threshold corrections associated with hypercharge flux. Along the way, we exemplify the `local-to-global' approach in F-theory model building and demonstrate how the Tate divisor formalism can be used to address several challenges of extending local models to global ones. These include in particular the construction of G-fluxes that extend non-inherited bundles and the engineering of U(1) symmetries. We go beyond chirality computations and determine the precise (charged) massless spectrum, finding exactly three families of quarks and leptons but excessive doublet and/or triplet pairs in the Higgs sector (depending on the example) and vector-like exotics descending from the adjoint of SU(5)_{GUT}. Understanding why vector-like pairs persist in the Higgs sector without an obvious symmetry to protect them may shed light on new solutions to the mu problem in F-theory GUTs.Comment: 95 pages (71 pages + 1 Appendix); v2 references added, minor correction

    Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds

    Full text link
    The six-dimensional effective action of F-theory compactified on a singular elliptically fibred Calabi-Yau threefold is determined by using an M-theory lift. The low-energy data are derived by comparing a circle reduction of a general six-dimensional (1,0) gauged supergravity theory with the effective action of M-theory on the resolved Calabi-Yau threefold. The derivation includes six-dimensional tensor multiplets for which the (anti-) self-duality constraints are imposed on the level of the five-dimensional action. The vector sector of the reduced theory is encoded by a non-standard potential due to the Green-Schwarz term in six dimensions. This Green-Schwarz term also contains higher curvature couplings which are considered to establish the full map between anomaly coefficients and geometry. F-/M-theory duality is exploited by moving to the five-dimensional Coulomb branch after circle reduction and integrating out massive vector multiplets and matter hypermultiplets. The associated fermions then generate additional Chern-Simons couplings at one-loop. Further couplings involving the graviphoton are induced by quantum corrections due to excited Kaluza-Klein modes. On the M-theory side integrating out massive fields corresponds to resolving the singularities of the Calabi-Yau threefold, and yields intriguing relations between six-dimensional anomalies and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections improve

    Hypermoduli Stabilization, Flux Attractors, and Generating Functions

    Get PDF
    We study stabilization of hypermoduli with emphasis on the effects of generalized fluxes. We find a class of no-scale vacua described by ISD conditions even in the presence of geometric flux. The associated flux attractor equations can be integrated by a generating function with the property that the hypermoduli are determined by a simple extremization principle. We work out several orbifold examples where all vector moduli and many hypermoduli are stabilized, with VEVs given explicitly in terms of fluxes.Comment: 45 pages, no figures; Version submitted to JHE

    Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD) recombinant inbred mouse strains

    Get PDF
    miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL) analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes.|We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA's expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling.|The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous functional studies, demonstrating the value of this approach for discovery of new functional roles and downstream processes regulated by miRNA

    F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds

    Full text link
    The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X contains information about the abelian sector of the six-dimensional theory obtained by compactifying F-theory on X. After examining features of the abelian anomaly coefficient matrix and U(1) charge quantization conditions of general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil rank-one as a first step towards understanding the features of the Mordell-Weil group of threefolds in more detail. In particular, we generate an interesting class of F-theory models with U(1) gauge symmetry that have matter with both charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height of a section to intersection numbers between the section and fibral rational curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction

    M-theory moduli spaces and torsion-free structures

    Get PDF
    Motivated by the description of N=1\mathcal{N}=1 M-theory compactifications to four-dimensions given by Exceptional Generalized Geometry, we propose a way to geometrize the M-theory fluxes by appropriately relating the compactification space to a higher-dimensional manifold equipped with a torsion-free structure. As a non-trivial example of this proposal, we construct a bijection from the set of Spin(7)Spin(7)-structures on an eight-dimensional S1S^{1}-bundle to the set of G2G_{2}-structures on the base space, fully characterizing the G2G_{2}-torsion clases when the total space is equipped with a torsion-free Spin(7)Spin(7)-structure. Finally, we elaborate on how the higher-dimensional manifold and its moduli space of torsion-free structures can be used to obtain information about the moduli space of M-theory compactifications.Comment: 24 pages. Typos fixed. Minor clarifications adde
    corecore