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1. Introduction

Many closed-string backgrounds with 4D N = 1 supersymmetry descend from back-

grounds with 4D N = 2 supersymmetry. The chiral multiplets in the N = 1 theories

then arise from projections of either N = 2 vector multiplets or N = 2 hypermulti-

plets. While it is well-understood how to use fluxes to stabilize the vector moduli in

both IIB and IIA compactifications [1–3] (for review see [4–6]), it has been less clear

how to stabilize the hypermoduli. In this paper we introduce a general scheme for un-

derstanding how specific geometric and non-geometric fluxes can stabilize many more

of the hypermoduli. As an example of this scheme, we will study in detail the addition

of geometric fluxes to O3/O7 compactifications with 3-form flux.

Our starting point is fairly general. We make only two modest assumptions about

how the hypermultiplet moduli enter into the 4D scalar potential:

• Homogeneity : the Kähler potential is assumed homogeneous of degree four in the

imaginary parts of the hypermoduli. This is satisfied by Calabi-Yau orientifolds,

as well as for more general compactifications with SU (3)× SU (3) structure.

• Linearity : the hypermultiplet moduli should only appear linearly in the superpo-

tential. This is the case for compactifications with generalized fluxes, our main

example.

We show that under these assumptions the scalar potential can be rewritten as a sum of

universal, positive semi-definite terms, and a term governed by a metric that generally

has indefinite signature. For some choices of fluxes, this final term is also positive semi-

definite, so that we can find absolute minima of the scalar potential by setting each

term separately to zero. The resulting Minkowski vacua are natural generalizations of

the familiar no-scale vacua introduced by GKP [1].

Our primary example of this new class of Minkowski vacua is IIB O3/O7 com-

pactifications with 3-form fluxes (as usual) and geometric fluxes (the new ingredient).

Minimization of the scalar potential for this entire class of vacua is equivalent to an ISD

condition with additional constraints. The ISD condition can be recast as a set of flux

attractor equations [3, 7–11] which stabilize the vector moduli zi in the manner previ-

ously studied for O3/O7 compactifications with 3-form fluxes alone. The hypermoduli

τ (the axio-dilaton) and Ga (additional 2-form moduli) enter as fixed background pa-

rameters for the purpose of vector moduli stabilization. However, as we mentioned
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already, the ISD condition is supplemented by additional constraints. It is those that

control the stabilization of the hypermoduli.

An important ingredient in the analysis is the manner in which the vector moduli

are stabilized: solutions to the flux attractor equations can be presented as derivatives of

a scalar generating function [3], whether or not there are geometric fluxes present. The

hypermoduli enter this generating function as parameters that are arbitrary a priori.

However, the constraints that control the stabilization of hypermoduli turn out to be

equivalent to an extremization principle on the generating function over hypermoduli

space. For the purpose of hypermoduli stabilization the generating function thus plays

a role similar to that of a conventional potential.

In favorable circumstances the extremization over hypermoduli space may yield

hypermoduli that are all stabilized at finite values. However, it may also give either

runaway behavior, or flat directions. We will see choices of fluxes which realize each of

these possibilities. An obvious general rule is that vacua with many fluxes turned on

have fewer unstabilized moduli. More surprisingly, we find that the number of hyper-

moduli that can be stabilized is apparently limited by the number of vector moduli.

One of the motivations for this work is to develop the generating function formalism

for flux compactifications. Certainly the generating function provides a convenient

way to summarize the VEVs and the masses of the scalar fields stabilized by fluxes.

Additionally, it is intriguing that the role it plays in the flux attractor equations is

analogous to that played by the black hole entropy in black hole attractor equations.

This analogy suggests a deep relation to counting of vacua which is obscured by the

usual geometric treatment of the fluxes. It would be interesting to develop this relation

further.

This paper is organized as follows. In section 2 we review a few features of no-scale

vacua, as they appear in the standard GKP context. We then generalize those construc-

tions to the generic setup of interest here. In section 3 we provide a brief introduction

to generalized fluxes and the manner in which they appear in the low energy theory.

Combining with the results from section 2, we find the attractor equations for no-scale

vacua with geometric fluxes. In section 4 we introduce the generating function and

show that it both solves the attractor equations for vector moduli and also provides

an extremization principle on hypermoduli space. In section 5 we give several explicit

examples that illustrate our methods. A few technical details have been collected in

appendix A.

2. A General Class of no-scale Vacua

In this section we seek to present the scalar potential of Type II flux compactifications
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as a BPS-like sum of positive semi-definite terms, thus finding Minkowski vacua when

each of those terms vanish separately. The resulting minimization conditions will later

be the linchpin for attractor equations.

We first review the standard GKP flux vacua with just one hypermodulus, the axio-

dilaton τ , and then generalize to situations with many hypermoduli. We maintain a

rather general setting, albeit with assumptions on the theory motivated by subsequent

applications to situations with generalized fluxes.

2.1 GKP Compactifications

To get started we review the simplest and most widely studied class of flux vacua [1, 12]:

O3/O7 orientifold vacua in type IIB theory, with F3 and H3 fluxes turned on1. We refer

to these vacua as “GKP compactifications.”

In these theories the vector moduli (descended from N = 2 vector multiplets) are

the complex structure moduli zi. The hypermoduli (descended from N = 2 hypermul-

tiplets) are the axio-dilaton τ and the Kähler moduli Tα.

At large volume and weak coupling, the Kähler potential factorizes into

K = Kz

(
zi
)
− log [−i (τ − τ )] +KT (Tα) , (2.1)

and enjoys a homogeneity property

Kαβ(∂
αK)(∂βK) = 3 , (2.2)

where Kαβ is the Tα block of the inverse Kähler metric. This homogeneity property is

proven in Appendix A, as is a more general version. The 3-form RR and NS fluxes F3

and H3 give rise to the GVW superpotential [13, 14]

W =

∫
G3 ∧ Ω3 , (2.3)

where

G3 ≡ F3 − τH3 . (2.4)

The superpotential in this situation is linear in τ, and independent of Tα.

The scalar potential is

e−KV =
∑

X,Y=i,τ,α

KXYDXWDYW − 3 |W |2 , (2.5)

1We also assume h
(1,1)
− = 0, since we want to describe the simplest situation.
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with the Kähler derivative defined as

DXW = ∂XW +W∂XK . (2.6)

Because the superpotential is independent of the Tα, and because the Kähler potential

(2.1) factorizes, the 4D scalar potential (2.5) reduces to

e−KV = KijDiWDjW +KττDτWDτW +
[
Kαβ (∂

αK) (∂βK)− 3
]
|W |2 (2.7)

= KijDiWDjW +KττDτWDτW . (2.8)

The quantity in square brackets vanishes by virtue of the homogeneity relation (2.2).

The inverse Kähler metric Kij has positive eigenvalues, and Kττ = 4Im (τ)2 is positive,

so this potential is positive semi-definite, with an absolute minimum whenDiW = 0 and

DτW = 0. Since DαW = W∂αK is generically non-zero, supersymmetry is broken. The

combination of supersymmetry breaking and vanishing scalar potential are the defining

features of a no-scale vacuum.

The linearity of the superpotential in τ allows us to write the DτW = 0 condition

in a more illuminating manner:

DτW = −

∫
H3 ∧ Ω3 −

1

τ − τ

∫
G3 ∧ Ω3 (2.9)

= −
1

τ − τ

∫
G3 ∧ Ω3 = 0 . (2.10)

If we combine this with

DiW =

∫
G3 ∧DiΩ3 = 0 , (2.11)

we see that the (3, 0) and (1, 2) pieces of the complex flux G3 must vanish. This is

equivalent to the condition that G3 must be imaginary self-dual (ISD). In the following

we will find that analogues of (2.10) and (2.11), and the resulting ISD conditions, arise

quite generically.

2.2 General Type II, N = 1 Compactifications

The GKP compactifications are very special, but the homogeneity and linearity prop-

erties we used above apply to virtually all Type II N = 1 flux compactifications, at

least in the limit of large volume and small coupling. In the general setting we will

assume that the moduli split into three groups:

Vector moduli: these are descended from N = 2 vector multiplets, and denoted zi.
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Stabilizable hypermoduli: these appear linearly in the superpotential, and are de-

scended from N = 2 hypermultiplets. We denote them by tâ.

Unstabilizable hypermoduli: these do not appear in the superpotential, and are

descended from N = 2 hypermultiplets. We denote them by tα̂.

We will denote all of the hypermoduli together as tA, with the A index running over both

â and α̂. The split of the tA into tâ and tα̂ will depend on which fluxes we have turned

on. In the simple GKP example we turned on F3 and H3, making the superpotential

linear in τ . In this context τ is a stabilizable hypermodulus while the Tα, which did not

appear in the superpotential, are unstabilizable hypermoduli. Later, we will introduce

h
(1,1)
−

moduli denoted Ga which will appear linearly in the superpotential due to a

coupling to geometric fluxes. Then τ, Ga will all be stabilizable hypermoduli in the

terminology used here.

The most generic superpotential linear in the tâ and independent of the tα̂ can be

written as:

W = F (z)− t̂aHâ (z) . (2.12)

Both F (z) and Hâ (z) are holomorphic functions of the vector moduli zi and indepen-

dent of the hypermoduli tA. They can be thought of as generalizations of
∫
F3∧Ω3 and∫

H3 ∧ Ω3.

In the general setting we assume that the Kähler potential decomposes into a term

for the vector moduli zi and another term for all the hypermoduli tA, and enjoys the

homogeneity relation:

KAB (∂AK) (∂BK) = 4 , (2.13)

KAB (∂BK) = t
A
− tA ≡ −2iηA . (2.14)

In the simple GKP example the Kähler potential (2.1) had independent terms for

τ and for the Tα, but generally it does not decompose so neatly. In that example

Kττ (∂τK) (∂τK) = 1, so (2.2) is consistent with the homogeneity (2.13). We discuss

how these homogeneity relations arise in different kinds of Type II compactifications in

Appendix A.

We include a brief aside on how corrections may affect our assumptions. String the-

ory corrections are generally governed by two expansion parameters, the string coupling

gs, and the string tension α′, and quantities can receive corrections both perturbative

and non-perturbative in these parameters. For our models, the linearity of the super-

potential in the hypermoduli will hold perturbatively to all orders, but can and will

receive non-perturbative corrections (in both gs and α′) which we will neglect. The
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Kähler potential receives perturbative corrections in both parameters which will gener-

ically ruin our homogeneity and no-scale properties. However, if we stay at tree level

in the string coupling gs, the α
′ corrections to the Kähler potential still preserve the

homogeneity property (2.13); for instance, the first correction, calculated in [15] simply

adds a term to e−K which is quartic in ητ = Im(τ). The first gs correction, however,

not only ruins the homogeneity property, but in fact mixes scalars coming from hyper-

multiplets with those coming from vector multiplets. However, these gs corrections are

also typically accompanied by α′ corrections (see for example [16]).

The no-scale cancellation in the previous subsection involved the DαW terms in

the scalar potential and the −3 |W |2 term. We are interested in similar cancellations

in a more general context, so we focus our attention on the DAW and −3 |W |2 terms.

We can use the homogeneity relations (2.13) and (2.14) to simplify them:

KABDAWDBW − 3 |W |2 = K âb̂DâWDb̂W +K α̂β̂ (∂α̂K)
(
∂
β̂
K
)
|W |2 − 3 |W |2

+
[
K âα̂ (∂α̂K)WDâW + c.c.

]
(2.15)

= K âb̂
[
DâWDb̂W − (∂âK)

(
∂
b̂
K
)
|W |2

]
+ |W |2

+
[
K âα̂ (∂α̂K)W∂âW + c.c.

]
(2.16)

= K âb̂∂âW∂b̂W + |W |2 +
[
K âA (∂AK)W∂âW + c.c.

]
(2.17)

= K âb̂∂âW∂b̂W + |W |2 − 2iηâ
[
W∂âW − c.c.

]
. (2.18)

In the second step we used (2.13). We then expanded out the K âb̂DâWDb̂W term and

rearranged terms so that we could apply (2.14). Recall that ηâ is just the imaginary

part of tâ.

We can evaluate the derivatives in (2.18) by virtue of the linearity of the superpo-

tential,

∂âW = −Hâ (z) . (2.19)

The remaining terms in (2.18) simplify when written in terms of

W̃ ≡ F (z)− t
â
Hâ (z) = W + 2iηâHâ (z) , (2.20)

the natural generalization of
∫
G3 ∧ Ω3 from the previous example. Adding in the

remaining terms in the scalar potential, we now find

e−KV = KijDiWDjW +
∣∣∣W̃
∣∣∣
2

+
[
K âb̂ − 4ηâηb̂

]
Hâ (z)H b̂ (z) . (2.21)

This is the natural generalization of the no-scale potential (2.8).

– 7 –



While the DiW and W̃ terms in (2.21) are closely related to the ISD conditions in

the O3/O7 example, the final set of terms is new. They will make a positive or negative

contribution to the potential depending on the eigenvalues of

hâb̂ ≡ K âb̂ − 4ηâηb̂ . (2.22)

The eigenvalues of hâb̂ are in general functions of the hypermoduli. When hâb̂ has one

or more negative eigenvalues, the scalar potential (2.21) may admit AdS minima; we

have little to say about such minima at this time. However, when the eigenvalues of

hâb̂ are positive semi-definite functions of the hypermoduli, Minkowski vacua arise if

DiW = 0 , (2.23)

W̃ = 0 , (2.24)

Hâ (z) = 0 , (2.25)

where the â index runs over the non-zero eigenvalues of hâb̂ only. Whenever W is

non-vanishing supersymmetry is broken because

DâW = Hâ (z) + (∂âK)W = (∂âK)W 6= 0. (2.26)

Thus our solutions are generally no-scale vacua.

Before performing a detailed analysis of (2.23)-(2.25), we can ask when they are

likely to have solutions. Trouble can arise if (2.23)-(2.25) together constitute more

equations than we have moduli. This occurs in two cases:

• If hâb̂ has more positive eigenvalues than there are vector moduli zi, we will not

in general be able to solve the relevant Hâ (z) = 0 conditions. This is because the

Hâ (z) are functions of the zi only, not of the hypermoduli.

• If hâb̂ has strictly positive eigenvalues, then the number of fields zi and tâ is equal

to the number of conditions inDiW = 0 andHâ (z) = 0. Because of the additional

W̃ = 0 condition, we do not in general expect to be able to reach the Minkowski

vacuum. Instead, we expect the overall factor of eK in the potential to lead to

runaway vacua.

We therefore expect Minkowski vacua to arise when hâb̂ has at least one zero eigenvalue,

no negative eigenvalues, and the number of positive eigenvalues is not greater than

the number of zi. The previous O3/O7 example falls into this category, since Kττ =

4Im (τ)2 , and thus the only eigenvalue of hâb̂ is hττ = 0. When hâb̂ is positive semi-

definite but does not satisfy these properties, we expect the overall factor of eK in the

scalar potential to lead to runaway vacua.
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In order to illustrate the utility of our simplified form for the scalar potential (2.21),

we will present a new set of Minkowski vacua in the next section. We will arrive at these

by adding geometric flux to the O3/O7 compactifications described at the beginning of

this section. The geometric flux will allow us to stabilize additional hypermoduli, which

cannot be stabilized with 3-form flux alone. It also appears to lead to an infinite series

of distinct vacua, as well as the ability to tune the string coupling to be arbitrarily

small. We will present the full hAB matrix for O3/O7 compactifications, and show

that the conditions (2.23)-(2.25) can easily be converted into flux attractor equations.

3. Attractor Equations and Geometric Flux

The axio-dilaton τ is the only hypermodulus that enters the perturbative type IIB

superpotential in the presence of RR fluxes and the 3-form NS flux H3. There are sev-

eral options for the addition of extra ingredients that give rise to dependence on more

hypermoduli. Vacua with generalized NS fluxes are appealing because T-duality estab-

lishes their existence in simple cases, while mirror symmetry suggests their existence in

more complicated cases. These duality considerations also largely determine how these

fluxes must appear in the N = 1 superpotential. In this section we derive stabiliza-

tion conditions for the hypermoduli in this context, with emphasis on geometric fluxes

(sometimes called metric fluxes).

3.1 Superpotential with Generalized Flux

For a long time it has been known that in a background with H-flux that lies parallel

to a circle (i.e. if the circle isometry contracted with H is non-zero), a T-duality along

the circle will generate a new solution in which some components of H-flux have been

exchanged for some non-constant components of the metric [17]. The effect of these

new metric components can be thought of as a twisting of the circle over the rest of

the geometry, encoded in the Cartan equation

dei = f i
jke

j ∧ ek . (3.1)

The coefficients f i
jk serve as analogs of Hijk, the components of the original H-flux.

Indeed, upon reduction to four dimensions, these components appear as parameters of

the low-energy theory in much the same way as Hijk do [18–20].

If there are more circle isometries, one might be able to perform a further T-duality,

converting some of the f i
jk into new objects Qij

k known as non-geometric fluxes. In the

presence of non-geometric fluxes, the string background no longer has the structure of

a geometric manifold, but can still be understood as torus fibers varying over a base,
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where the transition functions between patches include string dualities [21, 22]. From a

low-energy perspective, the non-geometric nature of the background isn’t relevant, and

the components Qij
k appear in a natural way in the superpotential. In fact, from the low

energy perspective, one is also tempted to include objects Rijk, which would correspond

to T-dualizing all three legs of some H-flux. From a ten-dimensional perspective, it’s

not clear whether these latter fluxes can in fact be constructed (indeed it is not clear

whether all possible configurations of the other geometric and non-geometric fluxes can

be engineered), but the manner in which they would appear in the effective theory is

essentially determined by symmetry considerations. For a more detailed discussion see

the review [23] and references therein.

For the purposes of studying the superpotential and the tadpole constraints, it will

be useful to introduce a slightly different organizational scheme for generalized fluxes.

In order to present this scheme, we must first give a basis for the cohomology of the

underlying Calabi-Yau orientifold where each element has definite parity under the

orientifold involution. For the remainder of this section we will specialize to O3/O7

compactifications of type IIB string theory and take the basis for even forms:

• The constant function 1 and the volume form ϕ, both even under the orientifold

involution.

• The 2-forms µα and their dual 4-forms µ̃α. All are even under the orientifold (so

α = 1, . . . , h1,1+ ).

• The 2-forms ωa and their dual 4-forms ω̃a. All are odd under the orientifold (so

a = 1, . . . , h1,1
−
).

We will also introduce symplectic bases for the 3-forms where each element has definite

parity under the orientifold involution:

• (AÎ ,B
Î) are even (so Î = 1, . . . , h2,1+ ).

• (αI , β
I) are odd (so I = 0, . . . , h2,1

−
). The extra index value is because the (3, 0)

and (0, 3) forms are odd.

Now, in compactifications with H-flux, it is often very useful to replace the local ex-

pressions Hijk for the components of H3 with a global expansion

H3 = mI
hαI − ehIβ

I , (3.2)

wheremI
h and e

h
I are the magnetic and electric components of the 3-form flux. To obtain

the analogous expansions for the geometric and non-geometric fluxes, one should recast
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the H-flux not just as a 3-form, but as a linear operator which maps p-forms to (p+3)-

forms (by wedging with H3). The geometric fluxes f i
jk similarly define a map from

p-forms to (p + 1)-forms, while the non-geometric fluxes Qij
k and Rijk give maps from

p-forms to (p − 1)- and (p− 3)-forms, respectively. Altogether, we can combine these

linear maps into an operator D [24, 25], which we can view as an operator of odd degree

on the basis forms of the underlying space. In particular we can write expansions of D

acting on the even forms

−D · 1 = H3 = mI
hαI − ehIβ

I , (3.3)

−Dµα = r̂α = r̂ÎαAÎ − r̂αÎB
Î , (3.4)

−Dωa = ra = rIaαI − raIβ
I , (3.5)

−Dµ̃α = q̂α = q̂αIαI − q̂αI β
I , (3.6)

−Dω̃a = qa = qaÎAÎ − qa
Î
BÎ , (3.7)

−Dϕ = s = sÎAÎ − sÎB
Î . (3.8)

The point here is just that H3 and Q
ij
k reverse the parity of forms under the orientifold

projection, while f i
jk and Rijk preserve it. We will not need the detailed map between

the component fluxes f i
jk, Q

ij
k , R

ijk and the 3-forms H3, r̂α, ra, q̂
α, qa, s (given in [26])

because we will use only the latter terminology from here on. For completeness, we

note that there is of course also an action analogous to (3.3)-(3.8) on the odd degree

cohomology, but again we do not need the details.

Now, it turns out that the H-flux, the geometric fluxes labeled ra, and the non-

geometric fluxes labeled q̂α all contribute to the superpotential, while the geometric

fluxes r̂α and the non-geometric fluxes qa and s contribute to D-terms [27]. For the

rest of this paper, we will focus on only the fluxes that enter the superpotential, and

set the latter group of fluxes to zero.

The operator D can be viewed as a generalization of the twisted exterior derivative

dH = d − H3∧ , which is the natural differential operator on forms in the presence

of H3-flux. For generalized fluxes, we would replace this with D and, when acting on

d-closed forms, we are left with just the linear action (3.3)-(3.8) of D. For consistency,

the operator D must be nilpotent, D2 = 0, like the usual exterior derivative [24, 26].

This constraint implies that the set of 3-forms H3, ra, and q̂α are all symplectically
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orthogonal2, i.e. that [27]
∫
H3 ∧ ra =

∫
H3 ∧ q̂

α =

∫
ra ∧ rb =

∫
ra ∧ q̂

α =

∫
q̂α ∧ q̂β = 0 , (3.9)

for all a, b, α, β. Another perspective on these constraints is to view them as NS source

tadpole equations. For instance,
∫
H3 ∧ ra contributes to the tadpole equation of NS5-

branes wrapping the two-cycle labeled by a, while
∫
ra ∧ rb represents KK-monopole

charge, , and other combinations correspond to more exotic sources [28]. Our models

will not include any of these NS sources, so the condition of symplectic orthogonality

stands.

Let us now briefly describe the hypermoduli, and the manner in which they descend

from N = 2 hypermultiplets [29]. For a type IIB O3/O7 compactification they are:

• τ = C0 + ie−φ, the axio-dilaton.

• Ga, a = 1, . . . , h1,1
−
. These arise from the complexified 2-form potential C2−τB2 =

(ca−τua)ωa = Gaωa. There is one of these for each 2-form ωa which is odd under

the orientifold involution.

• Tα, α = 1, . . . , h1,1+ . These are obtained by expanding a certain 4-form built out

of the RR potential C4 = ραµ̃
α as well as the Kähler form J = vαµα.

In fact, all of these hypermoduli can be conveniently and succinctly obtained by ex-

pansion of a formal sum of even degree forms [30],

Φc = e−B ∧ CRR + ie−φ
(
e−B+iJ

)
= τ +Gaωa + Tαµ̃

α , (3.10)

where CRR = C0 + C2 + C4 is a formal sum of RR potentials.

We can now write down the perturbative superpotential in the presence of the

generalized fluxes. It takes exactly the same form as the familiar GVW superpotential

[13]:

W =

∫
G3 ∧ Ω3 , (3.11)

where

Ω3 = ZIαI − FIβ
I , (3.12)

2In the case at hand, where only H3, ra, q̂
α are nonzero, demanding that D2 = 0 on the cohomology

of the underlying space is equivalent to the condition that the 3-forms form a symplectically orthogonal

set. However, we actually need to demand that D2 = 0 on locally defined closed forms, and this

requirement can be slightly more stringent. In this paper we shall only make use of the symplectic

orthogonality conditions, with the understanding that our generalized fluxes may be somewhat more

constrained.
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is the usual holomorphic 3-form. We generalize from G3 = F3 − τH3 in the GVW case

to

G3 = F3 +DΦc = F3 − τH3 −Gara − Tαq̂
α , (3.13)

when all the hypermoduli are taken into account. It is often useful to present this

complex flux in terms of components. Generalizing (3.2) we expand the complex flux

on basis 3-forms as

G3 = mIαI − eIβ
I , (3.14)

where now the complex flux components are

mI = mI
f − τmI

h −GarIa − Tαq̂
αI , (3.15)

eI = efI − τehI −GaraI − Tαq̂
α
I . (3.16)

The complex flux G3 is a combination of the fluxes, F3, H3, ra, q̂
α that we consider

“inputs,” parts of the definition of the vacuum, and then the hypermoduli τ, Ga, Tα
which constitute dynamical fields.

The superpotential in component form is

W = eIZ
I −mIFI . (3.17)

It is worth emphasizing that the superpotential depends on vector moduli (complex

structure moduli) and hypermoduli (Kähler moduli) in quite different ways:

• Vector moduli: enter through the symplectic section (ZI , FI) in the familiar

manner, described by special geometry and a holomorphic prepotential F with

derivative FI . The physical moduli can (in one patch) be taken as the ratios

zi = Z i/Z0, i = 1, . . . , h
(2,1)
−

.

• Hypermoduli: enter linearly through the generalized complex flux (3.13). It is

this property that we assumed from the outset in the general discussion in section

2.2.

3.2 Spacetime Potential with Geometric Flux

We next compute the spacetime potential (2.21) from the superpotential (3.17). For this

we need the Kähler potential for the hypermoduli which, at large volume, is essentially

the volume of the compactification manifold

KH = − log[−i(τ − τ̄ )4 (V6)
2] . (3.18)

The Calabi-Yau volume V6 (equal to (κv3)/6 in the notation below) depends implicitly

on the hypermoduli τ, Ga, Tα, so it requires some effort to carry out differentiations
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with respect to these scalar fields and obtain the Kähler metric. The final result for

the inverse Kähler metric becomes [29]

Kτ τ̄ = − (τ − τ̄ )2 , (3.19)

Kτ ā = (τ − τ̄)2 ua , (3.20)

Kτ
ᾱ = −

1

2
(τ − τ̄)2

(
κ̂u2
)
α
, (3.21)

Kab̄ = (τ − τ̄)2
[
1

6

(
κv3
)
(κ̂v)−1 ab − uaub

]
, (3.22)

Ka
ᾱ = (τ − τ̄)2

[
−
1

6

(
κv3
) [

(κ̂u) (κ̂v)−1]a
α
+

1

2
ua
(
κ̂u2
)
α

]
, (3.23)

Kαβ̄ = (τ − τ̄)2
[
1

6

(
κv3
)
(κv)αβ −

1

4

(
κv2
)
α

(
κv2
)
β

+
1

6

(
κv3
) [

(κ̂u) (κ̂v)−1 (κ̂u)
]
αβ

−
1

4

(
κ̂u2
)
α

(
κ̂u2
)
β

]
. (3.24)

Here we have introduced intersection numbers

∫
µα ∧ µβ ∧ µγ = καβγ ,

∫
µα ∧ ωa ∧ ωb = κ̂αab , (3.25)

and used a shorthand notation for contractions

(
κv3
)
= καβγv

αvβvγ , (κ̂v)ab = κ̂αabv
α , etc. (3.26)

The spacetime potential (2.21) depends on the matrix hAB̄ introduced in (2.22), which

is essentially determined by the inverse Kähler metric. The fields ηA are the imaginary

part of the hypermoduli, here

2iητ = τ − τ̄ = 2ie−φ , (3.27)

2iηa = −(τ − τ)ua , (3.28)

2iηα =
τ − τ

2

[(
κ̂u2
)
α
−
(
κv2
)
α

]
. (3.29)

With this information, we easily find the matrix (2.22):
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hτ τ̄ = 0 , (3.30)

hτ ā = 0 , (3.31)

hτᾱ = 2e−2φ
(
κv2
)
α
, (3.32)

hab̄ = −
2

3
e−2φ

(
κv3
)
(κ̂v)−1 ab , (3.33)

haᾱ =
2

3
e−2φ

(
κv3
) [

(κ̂u) (κ̂v)−1]a
α
− 2e−2φua

(
κv2
)
α
, (3.34)

hαβ̄ = e−2φ

{
−
2

3

(
κv3
)
(κv)αβ −

2

3

(
κv3
) [

(κ̂u) (κ̂v)−1 (κ̂u)
]
αβ

+
(
κv2
)
α

(
κ̂u2
)
β
+
(
κ̂u2
)
α

(
κv2
)
β

}
. (3.35)

The vanishing of the components hτ τ̄ = hτ ā = 0 is significant. It means that, if we

consider just the τ and Ga hypermoduli then hâb̂ has one zero eigenvalue. Moreover, its

remaining eigenvalues are positive, since (κ̂v)ab is a negative-definite symmetric matrix

inside the Kähler cone3. According to the general criteria at the end of section 2.2 this

means that all of τ and the Ga would be stabilized. We are primarily interested in this

setup, and will develop it further.

With the fluxes included in (3.13), Tα is also a stabilizable modulus. However,

both haᾱ and hαβ have ambiguous signs, so including all of the fluxes from (3.13) will

generically lead to AdS vacua. Since we are well-equipped to study Minkowski vacua,

we will set q̂α = 0 for the remainder of the paper. This reduces the complex flux G3

from (3.13) to

G3 = F3 − τH3 −Gara , (3.36)

reduces the components of G3 from (3.15) and (3.16) to

mI = mI
f − τmI

h −GarIa , (3.37)

eI = efI − τehI −GaraI , (3.38)

and renders Tα unstabilizable.

For specific orientifold examples there can be other suitable truncations which can

include some of the Tα. For instance, in a background with h1,1
−

= 0 and some particular

even 2-form µ1 satisfying µ1∧µ1 = 0 (for instance one can construct suitable examples

as certain complete intersections in products of projective spaces), then h
(1,1)
−

= 0 and

so we could truncate to T1 alone (no τ). However, such solutions are not generic.

3This follows from the fact that the inverse Kähler metric above must be positive definite at all

points in the Kähler cone, and in particular when ua = 0.
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3.3 Attractor Equations from ISD Conditions

We are now ready to derive the attractor equations that describe moduli stabilization

of O3/O7 compactifications with geometric flux as well as conventional 3-form fluxes.

The starting point is a subset (2.23)-(2.24) of the conditions for Minkowski vacua

DiW =

∫
G3 ∧DiΩ3 = 0 , (3.39)

W̃ =

∫
G3 ∧ Ω3 = 0 . (3.40)

The geometric flux ra and the hypermoduli Ga just enter through the complex flux G3

(3.36). The form of the conditions (3.39)-(3.40) is therefore the same as when there is

no geometric flux. Indeed, these equations agree with the ISD conditions (2.10) and

(2.11) for O3/O7 compactifications with 3-form flux alone. As we will make explicit,

this means we can proceed as if there were no geometric fluxes, and then determine the

hypermoduli from the constraints (2.24) and (2.25) at the end.

In the absence of geometric fluxes, it is known that (3.39) and (3.40) are best ana-

lyzed in the complex basis
{
Ω3, DiΩ3, DiΩ3,Ω3

}
for the 3-form cohomology. Symplectic

orthogonality then determines the complex flux G3 as

G3 = CΩ3 + C iDiΩ3 , (3.41)

with equality in the sense of cohomology. Since the complex basis consists of eigenforms

of the Hodge star (∗ = +i on Ω3, DiΩ3 and ∗ = −i on Ω3, DjΩ3), it is manifest that G3

is a generic ISD flux. The expansion coefficients4C and C i determine the mass matrix

for the moduli [3].

Fluxes can be interpreted as twisting of the exterior derivative d → D, as we have

reviewed in section 3.1. The complex basis
{
Ω3, DiΩ3, DiΩ3,Ω3

}
is certainly a good

basis for the 3-form cohomology of the underlying Calabi-Yau [31], but relatively little is

known about the corresponding twisted cohomology. We can justify the continued use

of the complex basis by observing that the fluxes we consider preserve SU(3) structure,

even though they generally spoil the SU(3) holonomy. The basis elements Ω3, DiΩ3

transform in representations of SU(3); the SU (3) structure ensures that they satisfy the

usual orthogonality relations, and that they retain their eigenvalues under the Hodge

star [32, 33]. We can therefore apply (3.41) also after the introduction of geometric

fluxes, with the equality holding up to terms that vanish in the integral.

The covariant derivative with respect to the zi that appears in (3.41) is awkward

(because it obscures symplectic invariance) and also presents challenges in practical

4The normalization of these is changed compared with [3]: Chere = iIm (τ)Cthere, Ci
here =

−iIm (τ)Ci
there, and LI

here = −iIm (τ)LI
there.
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computations (because the Kähler potential enters). It is advantageous to replace it

with an ordinary derivative with respect to the ZI , i.e.

G3 = CΩ3 + LI∂IΩ3 . (3.42)

In doing so we must be conscious of the fact that ordinary derivatives of Ω3 contain a

term proportional to Ω3:

∂IΩ3 = (∂IK) Ω3 + . . . . (3.43)

TheG3 (3.41) cannot contain a term proportional to Ω3 so we must impose an additional

constraint:

LI∂IK = 0 , (3.44)

on the LI . There is indeed one more complex parameter among the LI than there is

among the C i, which is consistent with the addition of one complex constraint. Our

result (3.42) is the attractor equation, written as a relation between 3-forms.

The attractor equations are perhaps more transparent when written in terms of the

real basis (αI , β
I) of odd 3-forms introduced in section 3.1. Then the moduli are encoded

in the symplectic section (ZI , FI) introduced in (3.12) and the flux components take

the form (3.15)-(3.16). The component form of the attractor equation (3.42) becomes:

mI = CZ
I
+ LI , (3.45)

eI = CF I + LJFIJ . (3.46)

We consider CZI and LI to be the independent variables in the attractor equations.

The CZI determine the physical moduli zi as well as an additional parameter, CZ0,

which only appears in the scalar mass matrix. The LI are all mass parameters. CFI

and FIJ are functions of the CZI – the specific functional forms are determined by

the symplectic section of the Calabi-Yau. Since the number of attractor equations in

(3.45),(3.46) is equal to the number of variables in CZI , LI , solving (3.45) and (3.46)

should give CZI and LI as functions of the complex fluxes mI and eI . This is true

whether or not there are any geometric fluxes.

Now, this type of solution does not yet determine CZI and LI as functions of the

real, physical fluxes, because the complex fluxes (mI , eI) are themselves functions of the

hypermoduli. This dependence on the hypermoduli is governed by several constraints.

There is both the universal constraint (3.44), written in components as

0 = CF IL
I − CZ

I
LJFIJ , (3.47)
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and generally also the constraints (2.25). When only geometric fluxes have been in-

cluded, these latter constraints are the conditions:

Ha (z) =

∫
Ω3 ∧ ra = 0 , (3.48)

which we can write in terms of components as

0 = rIaCZ
I − rIaCFI . (3.49)

We emphasize that we have not set DaW = 0, but instead that DaW = W∂aK leads

to supersymmetry breaking when W 6= 0. This stands in contrast to the flux attractor

equations for SU (3)× SU (3) structure compactifications developed in [9, 10]. These

attractor equations only described supersymmetric (W = 0) Minkowski vacua, while the

attractor equations presented here describe non-supersymmetric (W 6= 0) Minkowski

vacua as well.

Let us summarize the procedure we propose. We first solve the attractor equations

(3.45) and (3.46) for CZI , LI . The result will be in terms of the complex fluxes (mI , eI)

that depend on both τ and Ga. In the next step we use the constraints (3.47) and

(3.49) together to determine τ and the Ga. The procedure is particularly simple in the

standard GKP case where there is no geometric flux, and so the complex fluxes depend

only on τ . Then there is just a single constraint (3.47) to solve. In the remainder of

the paper we will study the more general case including geometric fluxes.

There is one subtlety: although the constraints (3.47), (3.49) appear to determine

all of τ , Ga, in fact the number of τ , Ga that we can stabilize is limited by the number

h
(2,1)
−

of physical moduli zi = Z i/Z0. If we divide (3.49) by CZ0 and use the homogeneity

properties of the FI , we see that the hypermoduli enter into (3.49) only via the zi, so only

h
(2,1)
−

distinct combinations of the hypermoduli are constrained. When h
(1,1)
−

> h
(2,1)
−

,

either h
(1,1)
−

− h
(2,1)
−

hypermoduli will remain unstabilized, or there will be no solutions

to (3.49) and we are forced into a runaway vacuum.

The situation is ameliorated somewhat by that fact that not all of the constraints

(3.49) can be independent. The geometric fluxes ra are 3-forms that must be symplec-

tically orthogonal due to the tadpole conditions (3.9). There are at most h
(2,1)
−

+1 such

three-forms, so only h
(2,1)
−

+1 of the constraints (3.49) can be independent. This is still

one more than h
(2,1)
−

, the number of zi’s and thus the number of independent equations

we can solve, according to the argument in the previous paragraph. For generic geo-

metric fluxes and h
(1,1)
−

> h
(2,1)
−

we will therefore find no solutions to (3.49), but for a

codimension one subspace of the space of possible geometric fluxes, we expect to be

effective at stabilizing hypermoduli.
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Summary of this section: The principal results are the attractor equations,

(3.45) and (3.46), and the constraints (3.47) and (3.49). These equations illuminate

how particular fluxes stabilize particular moduli. In the following sections we will show

that solutions to these attractor equations can be succinctly summarized by a single

generating function, as was the case without geometric fluxes. We will also solve several

examples where as many moduli as possible are stabilized.

4. Generating Functions with Geometric Flux

While the flux attractor equations (3.45), (3.46) and constraints (3.47), (3.49), are

considerably simpler than the equations that would arise from direct minimization of

the potential, they cannot be solved explicitly for a generic Calabi-Yau. Nevertheless,

we can establish several general properties of the solutions. First of all, the solutions

for all of the moduli and mass parameters can be presented as derivatives of a single

generating function. This was first shown in [3] for the standard GKP setup, and here

we extend the result to include geometric fluxes.

We will present two versions of the generating function, which give rise to two

different stabilization procedures. The first version depends on both the complex fluxes

and the hypermoduli, with the stabilized values of the hypermoduli determined by

extremizing the generating function with respect to the hypermoduli. The second

version employs a reduced generating function that depends on the real fluxes only.

In both cases the stabilization of the vector moduli is treated separately from the

stabilization of the hypermoduli.

4.1 Explicit Expression for the Generating Function

We begin by rewriting the electric and magnetic attractor equations, (3.45) and (3.46)

as:

CZ
I
=

1

2

(
mI + φI

)
, (4.1)

LI =
1

2

(
mI − φI

)
, (4.2)

CF I =
1

2
(eI + θI) , (4.3)

LJFIJ =
1

2
(eI − θI) , (4.4)

where the φI and θI are (typically non-holomorphic) functions of the complex fluxes

mI and eI . Although it may appear that arbitrary φI and θI solve (3.45) and (3.46),

leading to essentially arbitrary solutions for CZI and LI , the solutions for φI and θI
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are in fact related to one another in a nonlinear fashion. This is because FI and FIJ

are not independent parameters, but are fixed functions of the ZI , with the specific

functional form determined by the symplectic section of the Calabi-Yau. In order to

solve (4.1)-(4.4), we must substitute the expressions for CZI and LI in terms of mI

and φI into (4.3) and (4.4), then solve for φI and θI . Doing this directly is difficult even

for relatively simple Calabi-Yaus.

Considered as equations that determine the potentials φI and θI in terms of the

complex fluxes mI and eI , (4.1)-(4.4) are exactly the same whether or not we have

introduced geometric fluxes. We can therefore use a result proven in [3], namely that

all solutions for the φI and θI can be written as derivatives of a real generating function5

G :

φI = (τ − τ)
∂G

∂eI
, (4.5)

θI = − (τ − τ)
∂G

∂mI
. (4.6)

Although the additional minus sign in (4.6) may look awkward, it is necessary because(
∂/∂eI ,−∂/∂mI

)
is a good symplectic vector, while

(
∂/∂eI , ∂/∂m

I
)
is not. The deriva-

tives of G are taken with the other complex fluxes, as well as τ and the Ga, held fixed.

If we consider G as a thermodynamic function, (4.5) and (4.6) identify φI and θI as the

potentials conjugate to eI and m
I , respectively, and so we will frequently refer to them

as “the potentials.”

Another result of [3] that still holds after the introduction of geometric flux is that

G is homogeneous of degree (1, 1) in the complex fluxes. In other words,

G
(
λmJ , λeJ , λ̃m

J , λ̃eJ , τ, G
a
)
= λλ̃G

(
mJ , eJ , m

J , eJ , τ, G
a
)
, (4.7)

for any λ, λ̃ ∈ C. This implies that the potentials φI and θI are homogeneous of degree

(1, 0) . It also allows us to write an explicit expression for G :

G = eI
∂G

∂eI
+mI ∂G

∂mI
(4.8)

= −
1

τ − τ

{
eIφ

I
−mIθI

}
. (4.9)

The first line follows from the homogeneity of G, while the second follows by substituting

in (4.5) and (4.6). Given an explicit solution of (4.1)-(4.4), we can compute φI and θI ,

5Strictly speaking, we can arrive at a whole family of generating functions by changing the normal-

izing factor of (τ − τ) to various other functions of the hypermoduli. In section (4.2) we will see that

the choice of (τ − τ ) is preferred, even after we have introduced geometric fluxes.
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then use (4.9) to compute G. We also see that whenever the flux attractor equations

have multiple sets of solutions, each solution will correspond to a different generating

function.

4.2 Stabilizing the Hypermoduli

Once the potentials have been determined, we have solved the attractor equations

(3.45) and (3.46) for the unknowns CZI and LI , with the hypermoduli treated as given

parameters. To find the stabilized values of the hypermoduli we can substitute our

solutions for CZI and LI into the constraints (3.47) and (3.49) and solve. In this

section we will present an alternate procedure: simply extremize G with respect to the

hypermoduli.

We first present the universal constraint in a simplified form. If we substitute

(4.1)-(4.4) into (3.47), we find

0 = CF IL
I − CZ

I
LJFIJ = −

1

2

(
φIeI − θIm

I
)
. (4.10)

In order to recover the universal constraint and the constraints (3.49) from our new

procedure, we need the derivatives of G with the real fluxes, rather than the complex

fluxes, held fixed.

We begin by writing the τ−derivative of G with the real fluxes held fixed6 :

∂G

∂τ

∣∣∣∣
R

=
∂G

∂τ

∣∣∣∣
C

+
∂G

∂eI

∂eI
∂τ

+
∂G

∂mI

∂mI

∂τ
(4.11)

=
1

(τ − τ )2

{
φ
I
eI − θIm

I
}
+

1

τ − τ

{
φ
I
ehI − θIm

I
h

}
. (4.12)

In the first line we used R and C as a shorthand to indicate that the real fluxes and

complex fluxes, respectively, are held fixed. The second line follows by application

of (4.9), (4.5)-(4.6), (3.37), and (3.38). In the standard GKP setup, this expression

reduces to

∂G

∂τ

∣∣∣∣
R

=
1

(τ − τ)2

{
φ
I
[
efI − τehI + (τ − τ) ehI

]
− θ

I [
mI

f − τmI
h + (τ − τ )mI

h

]}
(4.13)

=
1

(τ − τ)2

{
φ
I
eI − θIm

I
}
. (4.14)

6The specific form of ∂G
∂τ

∣∣
C
was ultimately determined by the introduction of (τ − τ ) , rather than

some other function of the hypermoduli, in (4.5) and (4.6). Using (τ − τ) we will find simple conditions

on ∂G
∂τ

∣∣
R
and ∂G

∂Ga

∣∣
R
, while using other functions of the hypermoduli would lead to much more awkward

conditions.
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Comparing (4.14) with (4.10), we see that extremizing G with respect to τ, while holding

the real fluxes fixed, reproduces (3.47) in the standard GKP setup.

After adding geometric fluxes, (4.12) reduces to

∂G

∂τ

∣∣∣∣
R

=
1

(τ − τ )2

{
φ
I
[
efI − τehI −GarIa

]
− θ

I [
mI

f − τmI
h −GarIa

]}
, (4.15)

so a τ−derivative alone is insufficient to reproduce (4.10). However, we can combine

(4.15) with

∂G

∂Ga

∣∣∣∣
R

=
∂G

∂Ga

∣∣∣∣
C

+
∂G

∂eI

∂eI
∂Ga

+
∂G

∂mI

∂mI

∂Ga
(4.16)

=
1

τ − τ

{
φ
I
rIa − θIr

I
a

}
, (4.17)

to find

(τ − τ )
∂G

∂τ

∣∣∣∣
R

+
(
Ga −G

a) ∂G

∂Ga

∣∣∣∣
R

=
1

τ − τ

{
φ
I
eI − θIm

I
}
. (4.18)

Setting this linear combination of derivatives of G to zero thus reproduces (3.47), even

when geometric fluxes are included.

We also need to recover the remaining constraint (3.49) from derivatives of G. This

is straightforward, because the tadpole constraints (3.9) imply that

mIrIa − eIr
I
a = 0 , (4.19)

and so allow us to rewrite (4.17) as

∂G

∂Ga

∣∣∣∣
R

=
1

τ − τ

{(
mI + φ

I
)
rIa −

(
eI + θI

)
rIa

}
(4.20)

=
1

τ − τ

{
CZIrIa − CFIr

I
a

}
. (4.21)

Comparing this with (3.49), we see that extremizing G with respect to the Ga, while

holding the real fluxes fixed, reproduces the Ha (z) = 0 attractor equations. Combining

this with (4.18), we find that we must extremize over τ as well. It is somewhat surprising

that the tadpole constraints play a crucial role here, given that they do not appear

anywhere else in our study of the flux attractor equations.

Let us summarize our results about G so far. Suppose that we have somehow

determined G as a function of the complex fluxes and the hypermoduli. (4.5) and

(4.6) then determine the potentials φI and θI as functions of the complex fluxes and

τ, and (4.1) and (4.2) in turn determine the stabilized values of the vector moduli and
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mass parameters. The remaining dependence of these quantities on the hypermoduli,

through the complex fluxes, is fixed by extremizing G with respect to the hypermoduli,

while holding the real fluxes fixed. Upon substituting the values of the hypermoduli

into the expressions for φI and θI , we have determined the values of all the moduli, as

well as the values of the mass parameters CZ0 and LI .

4.3 Reduced Generating Function

One peculiar aspect of the generating function described so far is that the fluxes and

hypermoduli appear in G on roughly equal footing, but are treated very differently

when we solve for the various moduli. We will now show how the moduli zi and mass

parameters CZ0 and LI can be determined from a reduced generating function, G̃,

which depends on the real fluxes only. Formally, G̃ is constructed by substituting the

stabilized values of the hypermoduli into G.

We first address a preliminary issue concerning the map between real and complex

fluxes. While we have already recorded the expressions for the complex fluxes in terms

of the real fluxes (3.15)-(3.16), we will also need to know how derivatives with respect

to the complex fluxes are related to derivatives with respect to the real fluxes, and

this relationship is slightly subtle. When discussing the real fluxes we always explicitly

include the full set
{
mI

h, m
I
f , e

h
I , e

f
I , r

I
a, raI

}
, but when discussing the complex fluxes we

tend to include only mI , eI , and their complex conjugates. In fact the complete set

consists of
{
mI , mI , eI , eI , r

I
a, raI

}
. This implies that the relationship between the real

and complex derivatives is:

∂

∂mI
= −

1

τ − τ

(
τ

∂

∂mI
f

+
∂

∂mI
h

)
, (4.22)

∂

∂eI
= −

1

τ − τ

(
τ
∂

∂efI
+

∂

∂ehI

)
. (4.23)

We might have expected derivatives with respect to rIa or raI to appear here as well,

but the complex derivatives must give zero when acting on rIa and raI , so such terms

cannot appear.

The decomposition of (4.22) and (4.23) into derivatives with respect to real fluxes

suggests that we define a set of real potentials,

φI
f =

∂G

∂ehI
, φI

h = −
∂G

∂efI
, (4.24)

θfI = −
∂G

∂mI
h

, θhI =
∂G

∂mI
f

. (4.25)
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related to the complex potentials via

φI = φI
f − τφI

h , (4.26)

θI = θfI − τθhI . (4.27)

Note that the derivatives with respect to the real fluxes are taken with the hypermoduli

held fixed.

We now define G̃ as G with all hypermoduli replaced by their stabilized values,

written as functions of the real fluxes. While this is the natural way to turn G into

a function of the fluxes alone, we would like to know how G̃ relates to the attractor

equations. A simple calculation shows that

∂G̃

∂ehI
=

∂G

∂ehI
+
∂G

∂τ

∂τ

∂ehI
+

∂G

∂Ga

∂Ga

∂ehI
(4.28)

= φI
f . (4.29)

The second and third terms vanish because the hypermoduli are determined by extrem-

izing G with respect to τ and Ga.We see that derivatives of G̃ return the real potentials,

and therefore determine the complex potentials φI and θI as functions of τ.

The procedure we follow to determine the values of the moduli and mass parameters

if we know the reduced generating function G̃ is slightly different from the procedure we

follow if we have G. We first differentiate G̃ to determine the real potentials. This gives

us the moduli and mass parameters as functions of the real fluxes and the hypermoduli:

CZ
I
=

1

2

[
(
mI

f − τmI
h −GarIa

)
+

(
∂G̃

∂ehI
+ τ

∂G̃

∂efI

)]
, (4.30)

LI =
1

2

[
(
mI

f − τmI
h −GarIa

)
−

(
∂G̃

∂ehI
+ τ

∂G̃

∂efI

)]
. (4.31)

We then substitute these expressions into (3.47) and (3.49) and solve to find τ and the

Ga.

We believe that G̃ is a conceptually simpler object to study than G since it is a

function of the fluxes alone, rather than a function of fluxes and hypermoduli. We will

also see an example below where we cannot determine a closed form for G, but are able

to compute G̃.

5. Examples

In order to establish the utility of the flux attractor equations and the generating

function formalism, we will now analyze two compactifications that admit both 3-form
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fluxes and geometric fluxes. We will solve the attractor equations (3.45) and (3.46)

and the constraints (3.47) and (3.49) directly, then use the results to reconstruct the

generating function.

One important input for the flux attractor equations is the prepotential, which

determines the FI and FIJ via

FI = ∂IF , FIJ = ∂I∂JF .

In our first example we will study a particular Z4 orbifold of T 6, which gives rise to a

prepotential

FT 6/Z4
= −iZ0Z1 . (5.1)

In the second example, we will use the STU prepotential,

FSTU =
Z1Z2Z3

Z0
. (5.2)

The simplicity of the T 6/Z4 example makes it easy to demonstrate the logic of both

the flux attractor equations and the generating function. While the STU example is

more involved, we believe it is representative of what one would find when studying the

large class of cubic prepotentials.

An interesting property of the attractor equations (3.45), (3.46) and constraints

(3.47), (3.49), is that they do not include or require detailed information about the

space of hypermoduli. While we might have imagined that e.g. the triple intersection

numbers would play an important role, at least in the Ha = 0 equations, they do not.

Rather, we only need to know h
(1,1)
−

, which determines the number of different geometric

fluxes ra that can induce new F-terms, and thus stabilize additional moduli. In the

following we will carefully establish that there are constructions that give rise to these

prepotentials that also have h
(1,1)
−

6= 0.

5.1 T 6/Z4

In this example, a relatively simple prepotential will allow us to compute the generating

function G for generic fluxes. After describing the orbifold construction that gives rise to

(5.1), we will solve the attractor equations (3.45) and (3.46). This gives the potentials φI

and θI as functions of the complex fluxes, which we will then use to write the generating

function G. We will also write the system of equations that determines the values of

the stabilized moduli as functions of the real fluxes, and see that two hypermoduli can

be stabilized.
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5.1.1 Orbifold Construction

Let us consider an N = 2 supersymmetric orbifold T 6/Z4, where the action of Z4 on

the complex coordinates is generated by

Θ · (z1, z2, z3) = (iz1, iz2,−z3) . (5.3)

The untwisted sector of this orbifold gives rise to 5 (1, 1)-forms and one (2, 1)-form.

The twisted sector content depends on which T 6 lattice we are acting. To be concrete,

let us pick the A2
3 lattice (the root lattice of SU(4) × SU(4)). For this choice the

twisted sectors contribute 20 (1, 1)-forms but no 3-forms (see, e.g. [34]), so the only

complex structure moduli will come from the untwisted sector, and we do not need to

perform any truncations when computing the prepotential or, eventually, the generating

function.

Now let us construct an N = 1 supersymmetric orientifold by combining the invo-

lution

σ · (z1, z2, z3) = (z1,−z2, z3) , (5.4)

with Ω(−1)FL , where Ω here represents a worldsheet parity transformation and FL is

the left-moving fermion number on the worldsheet. The involutions σ and Θ2σ each

give rise to sets of untwisted sector O7-planes, while the involutions Θσ and Θ3σ give

rise to twisted sector O7-planes which wrap exceptional divisors at the θ2 fixed points.

There are no O3-planes in this model.

Under this orientifold involution, three of the untwisted sector (1, 1)-forms are

invariant, while the other two change sign (all of the twisted sector (1, 1)-forms are

invariant), giving h
(1,1)
−

= 2 and h
(1,1)
+ = 23. All of the 3-forms change sign, so h

(2,1)
−

= 1

and h
(2,1)
+ = 0. Thus, in principle we can turn on geometric fluxes r1 and r2 as well as

H3 and F3, and each of these 3-forms has four components.

For a certain choice of symplectic basis, the coefficients of the holomorphic three

form (3.12) correspond to a prepotential

F = −iZ0Z1. (5.5)

With this information we can turn to a computation of the generating function.

5.1.2 Solutions for Potentials and G

Using (4.1)-(4.4) and the prepotential (5.5), we can solve for eI and θI in terms of mI

and φI .

e0 = CF0 + LJF0J = i
(
CZ1 − L1

)
= iφ1, (5.6)

e1 = CF1 + LJF1J = i
(
CZ0 − L0

)
= iφ0, (5.7)
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which inverts to

φ0 = −ie1, φ1 = −ie0. (5.8)

Similarly, we have

θ0 = im1, θ1 = im0. (5.9)

Inserting these results into the expression (4.9) we find

G = −
i

τ − τ̄

(
e0e1 + e1e0 +m0m1 +m1m0

)
. (5.10)

5.1.3 Solutions for Hypermoduli and G̃

We can now derive the constraints. From the complex conjugate of (4.17) we find

∂G

∂Ga

∣∣∣∣
R

=
i

τ − τ̄

(
ra1e0 + ra0e1 + r1am

0 + r0am
1
)
= 0 , (5.11)

and after imposing this constraint we can write the complex conjugate of (4.18) as

∂G

∂τ̄

∣∣∣∣
R

= −
2i

(τ − τ̄)2
(
e0e1 +m0m1

)
= 0 . (5.12)

Setting these expressions to zero will stabilize some of our hypermoduli. Now all

three of H3, r1, and r2 must be symplectically orthogonal by the tadpole conditions

(3.9), but in our model a symplectically orthogonal set of 3-forms is at most two-

dimensional. Because of this, we can only hope to fix at most two linear combinations

of the three moduli τ , G1, and G2. More explicitly, if the two independent orthogonal

three-forms are denoted ξ1 and ξ2, and we write H3 = Aτξ1 + Bτξ2, ra = Aaξ1 +Baξ2,

then the complex flux is given by G3 = F3 − x1ξ1 − x2ξ2, where x1 = Aττ + AaG
a and

x2 = Bττ +BaG
a. Since the minimization procedure depends on the hypermoduli only

via the complex flux, we can only hope to stabilize the linear combinations x1 and x2,

leaving a third linear combination unfixed.

For completeness, we present the reduced generating function for this model. Re-

calling that the tadpole conditions should not be enforced until the end of the calcula-

tion, straightforward (but lengthy) algebraic manipulations lead us to G̃. To simplify

the expression, it is convenient to define an inner product on three-forms,

〈
x0α0 + x1α1 − x0β

0 − x1β
1, y0α0 + y1α1 − y0β

0 − y1β
1
〉

= x0y1 + x1y0 + x0y1 + x1y0. (5.13)
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We then have (for generic fluxes)

G̃ = ±
1

〈r1, r1〉 〈r2, r2〉 − 〈r1, r2〉
2

[(
〈r1, r1〉 〈r2, r2〉 〈F3, F3〉 − 〈r1, r2〉

2 〈F3, F3〉

− 〈r1, r1〉 〈r2, F3〉
2 − 〈r2, r2〉 〈r1, F3〉

2 + 2 〈r1, r2〉 〈r1, F3〉 〈r2, F3〉
)

×
(
〈r1, r1〉 〈r2, r2〉 〈H3, H3〉 − 〈r1, r2〉

2 〈H3, H3〉 − 〈r1, r1〉 〈r2, H3〉
2

−〈r2, r2〉 〈r1, H3〉
2 + 2 〈r1, r2〉 〈r1, H3〉 〈r2, H3〉

)

−
(
〈r1, r1〉 〈r2, r2〉 〈F3, H3〉 − 〈r1, r2〉

2 〈F3, H3〉

− 〈r1, r1〉 〈r2, F3〉 〈r2, H3〉 − 〈r2, r2〉 〈r1, F3〉 〈r1, H3〉

+ 〈r1, r2〉 〈r1, F3〉 〈r2, H3〉+ 〈r1, r2〉 〈r2, F3〉 〈r1, H3〉)
2]1/2 , (5.14)

where the plus sign is taken if

〈r1, r1〉 〈r2, r2〉 〈H3, H3〉 − 〈r1, r2〉
2 〈H3, H3〉 − 〈r1, r1〉 〈r2, H3〉

2

− 〈r2, r2〉 〈r1, H3〉
2 + 2 〈r1, r2〉 〈r1, H3〉 〈r2, H3〉 < 0, (5.15)

and the minus sign is taken otherwise.

5.2 The STU Model

With this example we add geometric fluxes to a compactification with an STU pre-

potential. This example was studied carefully in the absence of geometric fluxes in

[3, 35–38]. Substituting the symplectic section determined by (5.2) into (3.46), the

electric attractor equations become

e0 = −
CZ

1
CZ

2
CZ

3

(
CZ

0
)2 + 2L0CZ

1CZ2CZ3

(CZ0)3
−

(
L1CZ

2CZ3

(CZ0)2
+ cyc.

)
, (5.16)

e1 = −
CZ

2
CZ

3

CZ
0 − L0CZ

2CZ3

(CZ0)2
+ L2CZ

3

CZ0
+ L3CZ

2

CZ0
. (5.17)

Cyclic permutations of (5.17) give the remaining two electric attractor equations. Since

we can use (3.45) to rewrite the LI in terms of mI and CZI , these are four complex,

non-holomorphic, non-linear equations for the CZI . By using (4.1) we could recast

(5.16) and (5.17) as equations for the φI rather than the CZI . Rather than solve

directly for the CZI or the potentials, we will find it most useful to use zi = Z i/Z0, so

that (5.16) and (5.17) are considered as equations for the zi and CZ0.

While black hole attractor equations with the STU prepotential can be solved

explicitly for arbitrary black hole charges, the attractor equations (5.16) and (5.17)
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do not admit an explicit solution for general fluxes. Since we are interested in finding

explicit solutions that illuminate the results of sections (3) and (4), we will only turn on

four components of F3, four components of H3, and six geometric fluxes. These 14 real

flux components will allow us to explicitly stabilize the three complex vector moduli,

zi, and four complex hypermoduli, τ and three of the Ga. While it is not possible

to compute explicitly the generating function G for these fluxes, we will compute the

reduced generating function G̃, with the result given in equation (5.73).

An issue that will arise at several points in our analysis is the role of the tadpole

constraints (3.9). Once we are analyzing equations involving real fluxes, imposing the

tadpole constraints will consistently lead to significantly simpler expressions for the

stabilized values of the moduli, the mass parameters, and the generating function.

While simplifying with the tadpole constraints will not alter the algebraic relationships

between these quantities, they do affect their derivatives. Since one of our goals is to

illustrate how derivatives of the generating function reproduce the moduli and mass

parameters, the primary results of sections 5.2.3-5.2.5 will be presented both with and

without the tadpole constraints (3.9) imposed.

5.2.1 The Enriques Calabi-Yau and the STU Prepotential

We saw in section (3.2) that geometric fluxes could only induce new F-terms when

h
(1,1)
−

6= 0. Unfortunately, the standard orbifold construction that leads to the STU

prepotential, T 6/Z2 × Z2, has h
(1,1)
−

= 0. Another construction that leads to the STU

prepotential, but which has h
(1,1)
−

= 8 is an orientifold of the Enriques Calabi-Yau.

The construction of the Enriques Calabi-Yau [39] begins with K3 × T 2. The K3

factor admits the freely-acting Enriques involution, θ1, under which the holomorphic

2-form is odd. Orbifolding K3 by θ1 would give the Enriques surface, but we will

instead orbifold K3 × T 2 by θ1θ2, where θ2 takes the torus coordinate z3 to −z3. The

resulting surface is a self-mirror Calabi-Yau with h(1,1) = h(2,1) = 11. In the orbifold

limit of the underlying K3 factor, the untwisted sector contributes h(1,1) = h(2,1) = 3,

while the twisted sector contributes h(1,1) = h(2,1) = 8. The prepotential is governed by

the triple intersection numbers

κ123 = 1 , (5.18)

κ3ab = Cab , (5.19)

where Cab is the Cartan matrix of E8, and a, b = 4, ..., 11. Type II compactifications on

the Enriques Calabi-Yau have N = 2 supersymmetry.

The final step in the construction is the orientifold projection [40], which reduces

the amount of supersymmetry to N = 1. This employs a second involution which gives

– 29 –



−1 when acting on the 2-forms ωa, +1 when acting on ω1 and ω2, and inverts the T 2.

This splits the 2-form cohomology such that h
(1,1)
−

= 8 and h
(1,1)
+ = 3. Because the 3-

forms are constructed by wedging together 2-forms on the underlying K3 with 1-forms

on the underlying T 2, the 3-form cohomology splits with h
(2,1)
−

= 3 and h
(2,1)
+ = 8. The

triple intersection numbers (5.18) determine that three surviving complex structure

moduli will be governed by the STU prepotential.

5.2.2 Complex Fluxes and the Vector Moduli

Since we cannot explicitly solve the attractor equations (5.16) and (5.17) with generic

fluxes, we impose the following reality conditions on the complex fluxes:

m0 = m0 , (5.20)

mi = −mi , (5.21)

e0 = −e0 , (5.22)

ei = ei . (5.23)

We also make a complementary ansatz for the potentials:

φ
0
= φ0 , (5.24)

φ
i
= −φi , (5.25)

θ0 = −θ0 , (5.26)

θi = θi . (5.27)

This reduction was previously utilized in [3], where it was found to be a useful com-

promise between completely general fluxes (where (5.16) and (5.17) cannot be solved

explicitly) and solubility (since overly simple fluxes do not stabilize all of the moduli).

An important feature of the attractor equations (3.45) and (3.46) is that the fluxes

enter only via the complex fluxes mI and eI . This means that they lead to the same

solutions for the moduli and mass parameters as functions of the complex fluxes, with

or without geometric fluxes. Since (5.16) and (5.17) were already solved in [3], we

simply quote the solutions:

CZ0 =
1

4

(
m0 − i

∑

i

mi

√
m0ei
e0mi

)
, (5.28)

zi = −i

√
e0mi

m0ei
, (5.29)

– 30 –



with no summation over i in (5.29). The requirement that the metric on moduli space

remain positive, which in turn requires Im (zi) < 0 and Im (τ) > 0, implies a condition

on the complex fluxes:

i
mI

eI
> 0 , (5.30)

with no summation over I. This implies that the quantities under the square roots in

(5.28) and (5.29) are real and positive, and we will ensure for the remainder of this

section that only real, positive quantities appear under square roots. We will also take

the positive branch of all square roots.

The universal constraint (3.47) is also written in terms of the complex fluxes alone,

and so is the same with or without geometric fluxes. Generically, it takes the form of

a condition that the complex fluxes must satisfy. We again quote the result from [3]:

e0m
1m2m3

m0e1e2e3
= −1 . (5.31)

In fact this condition was used in the derivation of (5.28) and (5.29), where it helped to

find compact and explicit solutions. Because of this, (5.28) and (5.29) actually satisfy

(5.16) and (5.17) only up to terms that vanish after the application of (5.31).

For completeness, we also record the potentials φI and θI . These are determined

by substituting the solutions (5.28) and (5.29) into (4.1) and (4.3), which gives:

φ0 = −
1

2

(
m0 + i

∑

i

mi

√
m0ei
e0mi

)
, (5.32)

φ1 =
1

2

(
−m1 + i

√
e0m1

m0e1
m0 +

√
e2m1

m2e1
m2 +

√
e3m1

m3e1
m3

)
, (5.33)

θ0 =
1

2

(
e0 − i

e0
m0

∑

i

mi

√
m0ei
e0mi

)
, (5.34)

θ1 =
1

2

(
ie0

√
m0e1
e0m1

− e1 + im2

√
−

e2e1
m2m1

+ im3

√
−

e1e3
m1m3

)
. (5.35)

The expressions for φ2, φ3, θ2, and θ3 follow from cyclic permutations of (5.33) and

(5.35). This completes our discussion of the attractor equations in terms of complex

fluxes. In order to proceed further, we will need to specify precisely which real fluxes

we are turning on.

5.2.3 Stabilization of the Vector Moduli

We now choose specific real fluxes consistent with the reality conditions (5.20)-(5.23).

This will allow us to compute the quantities associated with the vector moduli in terms
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of real fluxes alone. We will also translate the sign restrictions (5.30) into restrictions

on the real fluxes.

For m0 and ei, which must be real, we turn on only m0
f and efi . For the purely

imaginary fluxes e0 and mi,we turn on eh0 and mi
h, as well as several geometric fluxes.

In accord with the argument in section 2.2, we turn on only three of the eight possible ra,

since we expect that turning on more ra would make the constraints (3.49) insoluble.

We will replace the a index with ĩ = 1, 2, 3, and turn on rĩ0 and r1
1̃
, r2

2̃
, r3

3̃
. The six

real components of the geometric fluxes are chosen so that the tadpole constraints∫
rĩ ∧ rj̃ = 0 and

∫
rĩ ∧ H3 = 0 are automatically satisfied. The non-trivial tadpole

constraints are

0 =

∫
rĩ ∧ F3 = m0

frĩ0 − efi r
i
ĩ
, (5.36)

and

n =

∫
F3 ∧H3 = −m0

fe
h
0 +mi

he
f
i , (5.37)

where the integer n is determined by the number of O3 planes and D3 branes.

We now write out explicitly the final set of constraints (3.49):

0 =

∫
rĩ ∧ Ω3 . (5.38)

For r1̃ this reduces to

r1̃0 = r11̃z
2z3 , (5.39)

with the other equations following by cyclic permutations. Inside the Kähler cone

Im (zi) < 0, so we deduce that
r1̃0
r1
1̃

< 0 . (5.40)

We can use (5.29) and (5.31) to rewrite (5.39) in terms of complex fluxes:

−
r1̃0
r1
1̃

=

√( e0
m0

)2 m2m3

e2e3
(5.41)

= −i
e1
m1

√
−

e2e3
m2m3

. (5.42)

Because the hypermoduli will enter via the complex fluxes, we would like an expression

with the complex fluxes isolated and linear. By combining (5.42) and its permutations,

we find

i
mi

ei
=

(
ri
ĩ

rĩ0

)2√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

, (5.43)
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with no summation over i. Substituting this back into (5.31), we find

−i
e0
m0

=

√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

. (5.44)

For the set of geometric and 3-form fluxes we turn on ei = efi and m0 = m0
f . We

can therefore use (5.43) and (5.44) to determine the remaining complex fluxes mi and

e0, which implicitly depend on the hypermoduli, in terms of the real fluxes alone. Then

(5.28) and (5.29) give explicit expressions for the stabilized moduli and CZ0 in terms

of real fluxes:

CZ0 =
1

4

(
m0

f +
∑

i

efi
ri
ĩ

rĩ0

)
, (5.45)

zi = i
ri
ĩ

rĩ0

√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

. (5.46)

The complex potentials (5.32)-(5.35) similarly become

φ0 =
1

2

(
−m0

f +
∑

i

efi
ri
ĩ

rĩ0

)
, (5.47)

φ1 = −
i

2

r1
1̃

r1̃0

(
m0

f − ef1
r1
1̃

r1̃0
+ ef2

r2
2̃

r2̃0
+ ef3

r3
3̃

r3̃0

)√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

, (5.48)

θ0 =
i

2

(
−m0

f +
∑

i

efi
ri
ĩ

rĩ0

)√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

, (5.49)

θ1 =
1

2

r1̃0
r1
1̃

(
m0

f − ef1
r1
1̃

r1̃0
+ ef2

r2
2̃

r2̃0
+ ef3

r3
3̃

r3̃0

)
, (5.50)

with the other φi and θi given by cyclic permutations of (5.48) and (5.50).

So far we have not utilized the tadpole constraints (5.36). After imposing the

tadpole constraints, we find

CZ0 = m0
f , (5.51)

zi =
i

efim
0
f

√
−m0

fe
f
1e

f
2e

f
3 , (5.52)
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and

φ0 = m0 = m0
f , (5.53)

φi = mi = −
i

efi

√
−m0

fe
f
1e

f
2e

f
3 , (5.54)

θ0 = e0 =
i

m0
f

√
−m0

fe
f
1e

f
2e

f
3 , (5.55)

θi = ei = efi . (5.56)

If we compare (5.53)-(5.56) with (4.2), we find that LI = 0 for this choice of fluxes, so

that the only non-zero mass parameter is CZ0. This indicates that the only mass scale

is m2
3/2 ∼ |CZ0|

2
.

5.2.4 Stabilization of the Hypermoduli

In (5.20)-(5.23) we chose e0 and m
i to be purely imaginary. This implies that Re (τ) =

Re
(
Gĩ
)
= 0 , so we will rewrite the hypermoduli as

τ = iτ2 , (5.57)

Gĩ = ig ĩ , (5.58)

where τ2 and g ĩ are real.

Our expressions (5.43) and (5.44) for the complex fluxes in terms of the real fluxes,

along with the definitions (3.37) and (3.38), give a system of linear equations that

determine the hypermoduli τ2 and g ĩ :

e0 = −iτ2eh0 − ig ĩrĩ0 = im0
f

√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

, (5.59)

mi = −iτ2mi
h − ig ĩri

ĩ
= −iefi

(
ri
ĩ

rĩ0

)2√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

. (5.60)

Note that we have not yet imposed any tadpole constraints. We can rewrite this system

of equations in matrix form,



eh0 r1̃0 r2̃0 r3̃0
m1

h r1
1̃

0 0

m2
h 0 r2

2̃
0

m3
h 0 0 r3

3̃







τ2
g1̃

g2̃

g3̃


 =

√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃




−m0
f

ef1
(
r1
1̃
/r1̃0

)2

ef2
(
r2
2̃
/r2̃0

)2

ef3
(
r3
3̃
/r3̃0

)2


 . (5.61)

We now need only invert the 4 × 4 matrix of NS fluxes in order to determine the

hypermoduli. This can be done in general, but the result is both quite long and not
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particularly illuminating. We instead quote the result with the tadpole constraints

(5.36) and (5.37) imposed,

τ2 =
4

n

√
−m0

fe
f
1e

f
2e

f
3 , (5.62)

g1̃ =
1

r1
1̃
ef1

(
1−

4

n
ef1m

1
h

)√
−m0

fe
f
1e

f
2e

f
3 , (5.63)

with the expressions for g2̃ and g3̃ analogous to (5.63).

Now that we have computed the VEVs of all the moduli, it is interesting to see what

restrictions on the moduli and the fluxes are imposed by the combination of the tadpole

constraints, (5.36) and (5.37), and the requirement that we stay inside the Kähler cone,

i.e. that the Kähler metric remain positive. While the tadpole constraints are naturally

written in terms of the fluxes alone, we can use our explicit expressions to see how the

moduli are constrained. Similarly, the Kähler cone restrictions are naturally written in

terms of the moduli, but the explicit solutions allow us to rewrite them as restrictions

on the fluxes.

In the case without geometric fluxes, the combination of tadpole constraints and

Kähler cone restrictions is quite restrictive. For example, in [3], where we used the

same combination of F3 and H3 as here, but no geometric fluxes, we found that staying

inside the Kähler cone required

eh0m
0
f < 0 , ef1m

1
h > 0 ,

ef2m
2
h > 0 , ef3m

3
h > 0 .

When we compare these with the tadpole constraint

n = −eh0m
0
f + efim

i
h ,

we see that each term on the right-hand side is positive, so no individual flux can be

larger than n. This renders the number of distinct choices of
{
eh0 , m

0
f , e

f
i , m

i
h

}
finite

and rather small. It also keeps the string coupling gs = 1/τ2 of order 1. We will now

argue that these restrictions are far less severe when geometric fluxes are included.

The crux of our argument is that introducing geometric fluxes does not lead to

additional Kähler cone restrictions. While we still need to ensure that Im (zi) < 0 and

that t > 0, there is apparently no such restriction on the g ĩ. We have already seen the

restrictions imposed on the geometric fluxes by these requirements (5.40), and can use

the tadpole constraints (5.36) to find a restriction on the RR fluxes:

efi
m0

f

< 0 . (5.64)

– 35 –



We do not, however, find any restriction7 on the signs of eh0 or mi
h. If we choose fluxes

such that mi
h/e

h
0 < 0, we can get cancellations between the terms in (5.37). These can-

cellations allow us to choose infinite series of fluxes that satisfy all physical constraints.

In particular, we can take the RR fluxes large and, by (5.62), send the string coupling

gs = 1/τ2 to zero. It would be interesting to see how perturbative and non-perturbative

corrections might modify this result.

5.2.5 The Generating Function

We now compute the main object of interest in this paper, the generating function for

the attractor equations. Since the result is surprisingly simple, we will first compute the

numerical value of the generating function with the tadpole constraints (5.36) imposed.

We will next compute the reduced generating function G̃ without imposing the tadpole

constraints, in order to check the results of section 4.

With the tadpole constraints (5.36) and (5.37) imposed, we find a surprisingly

simple expression for the numerical value of the generating function G̃. If we combine

the expressions for the complex potentials in (5.53)-(5.56) with our explicit expression

for the generating function (4.9), we find

G =
1

τ − τ

{
mIeI − eIm

I
}
=

1

τ − τ

∫
G3 ∧G3 . (5.65)

The NS tadpole constraints (3.9) imply that the geometric fluxes make no contribution

to the integral in (5.65). It therefore reduces to

G = −

∫
F3 ∧H3 = −n . (5.66)

An analogous generating function was derived in [3] using an identical prepotential and

choice of F3 and H3, but with no geometric fluxes:

Gthere = n−
1

2

[
−sgn

(
m0

f

)√
−eh0m

0
f +

∑

i

sgn
(
mi

h

)√
mi

he
f
i

]2
. (5.67)

This result, along with our expressions for the moduli (5.52) and (5.62), indicate that

the solutions without geometric flux cannot be recovered from the solutions with ge-

ometric flux by formally sending the geometric fluxes to zero. Instead, this limit is

7For example, it might appear that such a restriction would arise from (5.43) or (5.44), which

involve the complex fluxes e0 and mi and so implicitly involve eh0 and mi
h. If one rewrites the complex

fluxes using (5.16), (5.17), (5.36), and (5.37), both (5.43) and (5.44) reduce to
√
−m0

fe
f
1e

f
2e

f
3 > 0,

which is automatically satisfied whenever (5.64) is satisfied.
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discontinuous, suggesting that there is no sense in which we can add “a little” geomet-

ric flux. This is consistent with our expectation that the geometric fluxes obey a Dirac

quantization condition, just as the fluxes F3 and H3 do.

Although the expression for the generating function in (5.66) is quite elegant, its

derivatives will not reproduce the real potentials φ0
f , φ

i
h, θ

h
0 , and θ

f
i because we repeat-

edly used the tadpole constraints (5.36) and (5.37) to simplify the expression, and using

these constraints alters the derivatives of the generating function. We now compute G̃

without using the tadpole constraints, and verify that its derivatives correctly reproduce

the real potentials.

In order to compute both the reduced generating function and the real potentials,

we need to compute τ2 without using the tadpole constraints. If we go back to (5.61)

and invert we find

τ2 =
∆f

∆h

√
−
r1̃0r2̃0r3̃0
r1
1̃
r2
2̃
r3
3̃

, (5.68)

where we introduced the combinations

∆f ≡ m0
f +

∑

i

ri
ĩ

rĩ0
efi , (5.69)

∆h ≡ −eh0 +
∑

i

rĩ0
ri
ĩ

mi
h , (5.70)

which will appear quite frequently in the following. We now substitute the expressions

for the complex potentials (5.47)-(5.50), the expressions for the complex fluxes (5.59)

and (5.60), and the value of τ2 (5.68) into (4.9) to find the reduced generating function:

G̃ = −
i

2τ2

[
mIθI − eIφ

I
]

(5.71)

= −
1

2

∆h

∆f

[
m0

f

(
∆f − 2m0

f

)
+
∑

i

{
efi
ri
ĩ

rĩ0

(
∆f − 2efi

ri
ĩ

rĩ0

)}]
(5.72)

= −
1

2
∆h


∆f − 2

(
m0

f

)2
+
∑

i

(
efi r

i
ĩ
/rĩ0

)2

∆f


 . (5.73)

This is the principal result of this example, a single function that summarizes all aspects

of the stabilized vector moduli. Comparing (5.73) with (5.67), it is interesting that

(5.73) has two factors, one that is independent of F3 and one that is independent of

H3, while each term in (5.67) mixes F3 and H3. Upon imposing the tadpole constraints

(5.36) we recover (5.66), as expected.
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We substitute (5.47)-(5.50) and (5.68) into (4.26) and (4.27) to find the real poten-

tials:

φ0
f =

1

2

(
∆f − 2m0

f

)
, (5.74)

φi
h =

1

2
∆h

ri
ĩ

rĩ0

[
1− 2

efi r
i
ĩ

∆frĩ0

]
, (5.75)

θh0 = −
1

2
∆h

[
1− 2

m0
f

∆f

]
, (5.76)

θfi =
1

2

r1̃0
r1
1̃

(
∆f − 2efi

ri
ĩ

rĩ0

)
. (5.77)

These expressions agree with the derivatives (4.24) and (4.25) of the reduced generat-

ing function (5.73), up to terms that vanish when the tadpole constraints (5.36) are

imposed, in accord with the arguments of section (4). This validates the generating

function approach to flux attractor equations, even after the introduction of geometric

fluxes.
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A. Homogeneity Conditions

We collect here several known results about the Kähler potentials for hypermoduli in

N = 1 compactifications of Type II theories.

A.1 Homogeneity of Hypermoduli Kähler Potentials

In this section we will recall the form of the tree-level Kähler potential for hypermoduli,

K, for various N = 1 type II compactifications. For each we will demonstrate that K

is independent of the real parts of the hypermoduli, and that e−K is homogeneous of

degree four in the imaginary parts of the hypermoduli.
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A.1.1 IIB O3/O7

This is the case of greatest interest in this paper. We recall that the hypermoduli (the

scalar fields which descend from the N = 2 hypermultiplets) consist of the axio-dilaton

τ , a field Ga corresponding to each two-form ωa which is odd under the orientifold

involution, and a field Tα corresponding to each even four-form µ̃α. In terms of the

real fields (the RR potentials C0, C2 = caωa, and C4 = ραµ̃
α, the dilaton φ, the B-field

B2 = uaωa, and the Kähler form J = vαµ
α), they are given by8 :

τ = C0 + ie−φ, (A.1)

Ga = ca − τua, (A.2)

Tα = ρα −
i

2
e−φ

(
κv2
)
α
− (κ̂cu)α +

1

2
τ
(
κ̂u2
)
α
, (A.3)

as follows from (3.10). We have made use of the intersection numbers defined in (3.25)

and (3.26).

Now the Kähler potential for these fields is

K = −4 ln [−i (τ − τ̄)]− 2 ln [V6] , (A.4)

where the volume

V6 =
1

6

∫
J3 =

1

6

(
κv3
)
, (A.5)

is implicitly viewed as a function of Tα, τ , andG
a. One then computes the Kähler metric

by using the map (A.1)-(A.3) and the expression (A.4) to compute the derivatives of

K with respect to the complex fields (which can only be written explicitly in terms

of the real fields, since there are no general expressions for the vα in terms of the

complex fields). Inverting that Kähler metric then gives the expressions which appear

in (3.19)-(3.24).

We would like to understand the scaling properties of the (exponential of the)

Kähler potential when we scale the complex fields. Looking at (A.1)-(A.3), we see that

sending {τ, Ga, Tα} → {λτ, λGa, λTα} for some real λ is equivalent to an action on the

real fields

{
C0, c

a, ρα, e
−φ, ua, vα

}
−→

{
λC0, λc

a, λραλe
−φ, ua, vα

}
, (A.6)

8These conventions differ in some important ways from [29]. In particular, the definition of the vα

differs by a dilaton factor (vαthere = e−φ/2vαhere), essentially the difference between string frame and

Einstein frame, and Tα differs by an overall numerical factor (T there
α = (3i/2)T here

α ). They adhere more

closely to [30].
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i.e. everything scales with weight one except for ua and vα. But then it follows imme-

diately that

e−K = 24e−4φV2
6 , (A.7)

is a function of the imaginary parts of the fields which is homogeneous of degree four,

from the e−φ dependence.

We can also consider the simpler case with h1,1
−

= 0, so there are no Ga. In this

case, one can separately scale τ and the Tα, {τ, Tα} → {λτ, µTα}. In terms of the real

fields, this would be

{
C0, ρα, e

−φ, vα
}
−→

{
λC0, µρα, λe

−φ, λ−
1
2µ

1
2 vα
}
. (A.8)

Comparing with (A.7), we see that e−K is homogeneous of degree (1, 3) in the scalings

of (τ, Tα). In particular, this fact can be used to show (2.2).

A.1.2 IIA O6

For type IIA compactifications which are orientifolds of Calabi-Yau manifolds, and

which can contain O6-planes, the hypermoduli now come from the complex structure

moduli of the space. Indeed, in general the orientifold involution (which, in order to

preserve N = 1 supersymmetry, must be an anti-holomorphic involution of the Calabi-

Yau, and must act as minus one on the volume form of the space) can act on the

holomorphic three-form as σ · Ω3 = e2iθΩ3 for some constant phase θ. Also, given a

symplectic basis aK and bK , we can expand

Ω3 = ZKaK − FKb
K . (A.9)

As usual, the FK here can be derived from a holomorphic prepotential F (ZK), which

depends on our choice of symplectic basis. Then [41], the hypermoduli come from

expanding

Ωc = C3 + 2iRe (CΩ3) , (A.10)

where C is a compensator field that ensures that the expression above is invariant under

Kähler transformations. If we wish to be more explicit, it is convenient to choose a

symplectic basis in which the aK are even under the orientifold involution and the bK

are odd (we can always do this since the volume form is odd) and then we can simply

expand

Ωc = 2NKaK , NK =
1

2
ξK + iRe

(
CZK

)
, (A.11)

where we have also expanded C3 = ξKaK .

The Kähler potential for these fields is simply [2, 29]

– 40 –



K = −2 ln

[
2

∫
Re (CΩ3) ∧ ∗Re (CΩ3)

]
. (A.12)

From this expression it is obvious that the Kähler potential depends only on the imag-

inary parts of the complex fields NK , and that

e−K =

[
2

∫
Re (CΩ3) ∧ ∗Re (CΩ3)

]2
, (A.13)

is a homogeneous function of degree four in the Im(NK).

A.1.3 IIA and IIB, SU (3)× SU (3) , N = 1

In fact, these homogeneity properties are even more general. Both of the examples

above could have been formulated by saying that our complex hypermoduli fields are

obtained as expansion coefficients of a formal sum of complex forms [30],

Φc = e−BCRR + iRe (Φ) , (A.14)

where Φ = e−φe−B+iJ for IIB (see (3.10)), and Φ = CΩ3 for IIA. In both cases, the

Kähler potential is given by

K = −2 ln
[
i
〈
Φ,Φ

〉]
, (A.15)

where the pairing 〈·, ·〉 is the Mukai pairing, defined on even and odd forms respectively

as

〈ϕ, ψ〉 =

{∫
(ϕ0ψ6 − ϕ2 ∧ ψ4 + ϕ4 ∧ ψ2 − ϕ6ψ0) ,∫
(−ϕ1 ∧ ψ5 + ϕ3 ∧ ψ3 − ϕ5 ∧ ψ1) .

(A.16)

Again, from this formulation it is evident that K depends only on the imaginary parts

of the fields, and e−K is homogeneous of degree four.

This formulation is more general than the compactifications we have been consid-

ering so far. We could easily incorporate type IIB O5/O9 models, or we could include

compactifications with SU(3) × SU(3)-structure [30, 33, 42–46], which are in some

sense the most general compactifications of type II that have N = 1 supersymmetry

in four dimensions. Typically, these “spaces” are not even geometric, but nonetheless

they have the structure displayed above, so that the effective N = 1 supergravity in

four dimensions has a Kähler potential with the given homogeneity properties.
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A.2 Identities Implied by Homogeneity

In the previous section we showed that the Kähler potentials for virtually all Type II,

N = 1 compactifications obey

ηA
∂

∂ηA
e−K = 4e−K , (A.17)

where the index A runs over all of the hypermoduli, and ηA indicates the imaginary

parts of those moduli. We also showed that the Kähler potential is independent of the

real parts of the hypermoduli. We will now demonstrate how the homogeneity property

(A.17) implies (2.13) and (2.14),

KAB (∂AK) (∂BK) = 4 ,

KAB (∂BK) = −2iηA ,

which played a central role in section 2.2.

We begin by relating complex derivatives to ηA-derivatives:

∂A =
1

2

(
∂

∂ξA
− i

∂

∂ηA

)
. (A.18)

We can use this to relate complex derivatives of the Kähler potentialK to ηA derivatives

of e−K :

∂AK = −eK∂A
(
e−K

)
=
i

2
eK

∂

∂ηA
e−K , (A.19)

A similar result follows for the Kähler metric KAB. We have

∂A∂Be
−K = e−K [(∂AK) (∂BK)− ∂A∂BK] , (A.20)

so

KAB ≡ ∂A∂BK = (∂AK) (∂BK)−
1

4
e−K ∂

∂ηA
∂

∂ηB
eK (A.21)

=
1

4

[
e2K

(
∂

∂ηA
e−K

)(
∂

∂ηB
e−K

)
− e−K ∂

∂ηA
∂

∂ηB
eK
]
. (A.22)

In the last step we used (A.19) to write KAB in terms of ηA derivatives only. If we now

contract KAB with ηA, we can use (A.17):

ηAKAB =
1

4

[
4eK

∂

∂ηB
e−K − 3eK

∂

∂ηB
e−K

]
(A.23)

=
1

4
eK

∂

∂ηB
e−K (A.24)

=
i

2
∂BK , (A.25)
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We can now contract with the inverse metric KAB to arrive at (2.14):

KAB∂BK = −2iηA . (A.26)

Contracting this expression with ∂AK and using (A.17) again we find:

KAB (∂AK) (∂BK) = −2iηA∂AK (A.27)

= eKηA
∂

∂ηA
e−K (A.28)

= 4 . (A.29)

This is just (2.13), so we have demonstrated that (A.17) implies (2.13) and (2.14).
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