43 research outputs found

    Links between soil microbial communities and plant traits in a species-rich grassland under long-term climate change

    Get PDF
    Climate change can influence soil microorganisms directly by altering their growth and activity but also indirectly via effects on the vegetation, which modifies the availability of resources. Direct impacts of climate change on soil microorganisms can occur rapidly, whereas indirect effects mediated by shifts in plant community composition are not immediately apparent and likely to increase over time. We used molecular fingerprinting of bacterial and fungal communities in the soil to investigate the effects of 17 years of temperature and rainfall manipulations in a species‐rich grassland near Buxton, UK. We compared shifts in microbial community structure to changes in plant species composition and key plant traits across 78 microsites within plots subjected to winter heating, rainfall supplementation, or summer drought. We observed marked shifts in soil fungal and bacterial community structure in response to chronic summer drought. Importantly, although dominant microbial taxa were largely unaffected by drought, there were substantial changes in the abundances of subordinate fungal and bacterial taxa. In contrast to short‐term studies that report high resistance of soil fungi to drought, we observed substantial losses of fungal taxa in the summer drought treatments. There was moderate concordance between soil microbial communities and plant species composition within microsites. Vector fitting of community‐weighted mean plant traits to ordinations of soil bacterial and fungal communities showed that shifts in soil microbial community structure were related to plant traits representing the quality of resources available to soil microorganisms: the construction cost of leaf material, foliar carbon‐to‐nitrogen ratios, and leaf dry matter content. Thus, our study provides evidence that climate change could affect soil microbial communities indirectly via changes in plant inputs and highlights the importance of considering long‐term climate change effects, especially in nutrient‐poor systems with slow‐growing vegetation

    Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms

    Get PDF
    The diversity of arbuscular mycorrhizal (AM) fungi was investigated in an unfertilized limestone grassland soil supporting different synthesized vascular plant assemblages that had developed for 3 yr. The experimental treatments comprised: bare soil; monocultures of the nonmycotrophic sedge Carex flacca; monocultures of the mycotrophic grass Festuca ovina; and a species-rich mixture of four forbs, four grasses and four sedges. The diversity of AM fungi was analysed in roots of Plantago lanceolata bioassay seedlings using terminal-restriction fragment length polymorphism (T-RFLP). The extent of AM colonization, shoot biomass and nitrogen and phosphorus concentrations were also measured. The AM diversity was affected significantly by the floristic composition of the microcosms and shoot phosphorus concentration was positively correlated with AM diversity. The diversity of AM fungi in P. lanceolata decreased in the order: bare soil > C. flacca > 12 species > F. ovina. The unexpectedly high diversity in the bare soil and sedge monoculture likely reflects differences in the modes of colonization and sources of inoculum in these treatments compared with the assemblages containing established AM-compatible plants

    Drivers of vegetation change in grasslands of the Sheffield region, northern England, between 1965 and 2012/13

    Get PDF
    Questions: How has vegetation species diversity and species composition changed between 1965 and 2012/13 in acidic and calcareous grasslands? What has driven this change in vegetation? Location: A 2400-km2 area around Sheffield, northern England. Methods: In 1965 a survey was conducted to describe grassland vegetation of the Sheffield region. We repeated this survey in 2012/13, revisiting acidic and calcareous grassland sites (455 quadrats). Climate, N and sulphur deposition, cattle and sheep stocking rates, soil pH, altitude, aspect and slope were considered to be potential drivers of variation in vegetation. We analysed temporal changes in vegetation and examined relationships with spatial and temporal variation in driver variables. Results: Both acidic and calcareous grasslands showed clear changes in species composition between the two time periods. In acidic grasslands there was no significant change in richness but there were declines in diversity. There were significant increases in Ellenberg N. Nitrogen deposition and grazing were identified as potential drivers of spatial and temporal patterns but it was not possible to discriminate the respective impacts of potential drivers. In calcareous grasslands there were declines in species richness, diversity and appropriate diversity indices. Climate and soil pH were identified as potential drivers of spatial and temporal patterns. Conclusions: Despite only small site losses compared to other surveys in the UK, especially within the national park, both calcareous and acidic grasslands showed very clear changes in species composition. In acidic grasslands, high abundance of Pteridium aquilinum was a particular problem and had increased considerably between the two survey periods. Atmospheric N deposition and grazing were identified as drivers of species diversity. A number of calcareous grasslands showed signs of reduced management intensity leading to scrub invasion

    Mycorrhizal fungal abundance is affected by long-term climatic manipulations in the field

    Get PDF
    Climate change treatments - winter warming, summer drought and increased summer precipitation - have been imposed on an upland grassland continuously for 7 years. The vegetation was surveyed yearly. In the seventh year, soil samples were collected on four occasions through the growing season in order to assess mycorrhizal fungal abundance. Mycorrhizal fungal colonisation of roots and extraradical mycorrhizal hyphal (EMH) density in the soil were both affected by the climatic manipulations, especially by summer drought. Both winter warming and summer drought increased the proportion of root length colonised (RLC) and decreased the density of external mycorrhizal hyphal. Much of the response of mycorrhizal fungi to climate change could be attributed to climate-induced changes in the vegetation, especially plant species relative abundance. However, it is possible that some of the mycorrhizal response to the climatic manipulations was direct - for example, the response of the EMH density to the drought treatment. Future work should address the likely change in mycorrhizal functioning under warmer and drier conditions

    Differences in SMA-like polymer architecture dictate the conformational changes exhibited by the membrane protein rhodopsin encapsulated in lipid nano-particles

    Get PDF
    Membrane proteins are of fundamental importance to cellular processes and nano-encapsulation strategies that preserve their native lipid bilayer environment are particularly attractive for studying and exploiting these proteins. Poly(styrene-co-maleic acid) (SMA) and related polymers poly(styrene-co-(N-(3-N′,N′-dimethylaminopropyl)maleimide)) (SMI) and poly(diisobutylene-alt-maleic acid) (DIBMA) have revolutionised the study of membrane proteins by spontaneously solubilising membrane proteins direct from cell membranes within nanoscale discs of native bilayer called SMA lipid particles (SMALPs), SMILPs and DIBMALPs respectively. This systematic study shows for the first time, that conformational changes of the encapsulated protein are dictated by the solubilising polymer. The photoactivation pathway of rhodopsin (Rho), a G-protein-coupled receptor (GPCR), comprises structurally-defined intermediates with characteristic absorbance spectra that revealed conformational restrictions with styrene-containing SMA and SMI, so that photoactivation proceeded only as far as metarhodopsin-I, absorbing at 478 nm, in a SMALP or SMILP. In contrast, full attainment of metarhodopsin-II, absorbing at 382 nm, was observed in a DIBMALP. Consequently, different intermediate states of Rho could be generated readily by simply employing different SMA-like polymers. Dynamic light-scattering and analytical ultracentrifugation revealed differences in size and thermostability between SMALP, SMILP and DIBMALP. Moreover, encapsulated Rho exhibited different stability in a SMALP, SMILP or DIBMALP. Overall, we establish that SMA, SMI and DIBMA constitute a ‘toolkit’ of solubilising polymers, so that selection of the appropriate solubilising polymer provides a spectrum of useful attributes for studying membrane proteins

    Plant community composition, not diversity, regulates soil respiration in grasslands

    No full text
    Soil respiration is responsible for recycling considerable quantities of carbon from terrestrial ecosystems to the atmosphere. There is a growing body of evidence that suggests that the richness of plants in a community can have significant impacts on ecosystem functioning, but the specific influences of plant species richness (SR), plant functional-type richness and plant community composition on soil respiration rates are unknown. Here we use 10-year-old model plant communities, comprising mature plants transplanted into natural non-sterile soil, to determine how the diversity and composition of plant communities influence soil respiration rates. Our analysis revealed that soil respiration was driven by plant community composition and that there was no significant effect of biodiversity at the three levels tested (SR, functional group and species per functional group). Above-ground plant biomass and root density were included in the analysis as covariates and found to have no effect on soil respiration. This finding is important, because it suggests that loss of particular species will have the greatest impact on soil respiration, rather than changes in biodiversity per se

    Evidence of a causal connection between anti-herbivore defence and the decomposition rate of leaves

    No full text
    An experiment was conducted to test the hypothesis that interspecific variation in rates of leaf litter decomposition arises as a consequence of differences in the anti-herbivore defences of the living leaf. Leaf palatability was assayed in 54 vascular plant species of widespread occurrence in the British Isles, using the generalist herbivore Helix aspersa (garden snail) and the omnivore Acheta domestica (a cricket). The results were then compared with published standardised measurements of litter decomposition rate available for 43 of the species. There was convincing support for the hypothesis, in the form of a significant positive correlation between leaf palatability and litter decomposition rate. The correlation was also evident within subsets consisting of monocots or dictos. The results suggest a critical role for anti-herbivore defences in the link between aboveground and belowground processes in ecosystems
    corecore