85 research outputs found

    Thermo-Hydrodynamic Analysis of Plain and Tilting Pad Bearings

    Get PDF
    Abstract The demand for higher efficiency and increased equipment compactness is pushing industrial compressors' designers towards the choice of higher rotor peripheral speed. As a consequence, modern bearing-rotor systems are subject to complex thermal phenomena inducing a renewed interest on their real working conditions. This work is about the validation of the in-house numerical code TILTPAD developed at the Department of Industrial Engineering of the University of Florence for the thermo-hydrodynamic analysis of both plain and tilting pad journal bearings performance. TILTPAD is a steady-state code based on a 2D thin-film approach able to find either the resulting hydrodynamic load using the shaft equilibrium position and the rotational speed (i.e., direct problem) or the shaft equilibrium position once the load and the rotational speed are prescribed (i.e., inverse problem). In order to calculate pads' pressure distribution a finite element approach is used to solve the Reynolds equation together with a mixed procedure to evaluate pads equilibrium positions. Two steady-state energy equations based on a Petroff-type simplification are implemented in the code. The first one is proposed in the work of Balbahadur and Kirk [1] while the second one is based on an improved mixing model and a temperature dependent viscosity. An iterative procedure is used between Reynolds and energy equations to account for the dependence of the dynamic viscosity on the temperature field. Super-laminar flow regimes are also modeled in the code by means of a simplified approach able to represents, with reasonable accuracy, the effects of Taylor-Couette vortex flows and of the transitional regimes up to the onset of a fully turbulent state. Under these hypotheses, the pressure field is slightly affected by the viscosity variation while dissipative effects are enhanced. The code has been validated by means of comparison with available experimental data. Particular attention is devoted to static working parameters (i.e., equilibrium position and frictional power loss), reproducing the global behavior of the bearing, although some local characteristic is also considered

    On the development of an efficient regenerative compressor

    Get PDF
    AbstractRegenerative compressors are attractive machines used in several industrial processes. Their main characteristic is the highly three-dimensional development of the flow. Consequently, usual approach for axial or centrifugal compressors design are not an affordable strategy. The analysis of the rotor/stator coupling is the main issue in the design of regenerative compressors because of the vane-less nature of the stator and the characteristic trajectory of the flow. This paper describes the design of an efficient regenerative compressor based on a highly detailed Reynolds Averaged Navier-Stokes (RANS) analysis. The targets of the activity are defined in terms of expected mass-flow, pressure rise and compressor efficiency, and then a preliminary design is performed using an in-house mono-dimensional tool based on simplified assumptions for the nominal operating conditions. Once the model provided the most promising geometrical characteristics for the target operating point, three-dimensional steady RANS analyses are performed to evaluate the actual performance of the compressor for a wide range of mass-flow values. Special attention has been paid to the generation of the computational mesh and a specific solution for the rotor row has been developed. Compressibility effects are non-negligible since the flow Mach number is higher than 0.5 in several compressor sections, including the leakage zone regions where the losses are higher. The rotor and the full compressor efficiencies are evaluated and discussed to underline the importance of the rotor/volute coupling. The flow behaviour inside of the volute as well as the distribution of losses is also discussed and some guidelines for the efficient design of regenerative compressors are presented

    Development of a One-Dimensional Model for the Prediction of Leakage Flows in Regenerative Pumps

    Get PDF
    Regenerative pumps are characterized by a low specific speed that place them between rotary positive displacement pumps and purely radial centrifugal pumps. They are interesting for many industrial applications since, for a given flow rate and a specified head, they allow for a reduced size and can operate at a lower rotational speed with respect to purely radial pumps. The complexity of the flow within regenerative machines makes the theoretical performance estimation a challenging task. The prediction of the leakage flow rate between the rotating and the static disks is the one that more than others has an impact on the prediction of global performance. All the classical approaches to the disk clearance problem assume that there is no relevant circumferential pressure gradient. In the present case, the flow develops along the tangential direction and the pressure gradient is intrinsically non-zero. The aim of the present work is to develop a reliable approach for the prediction of leakage flows in regenerative pumps. The method assumes that the flow inside of the disk clearance can be decomposed into several stream-tubes. Energy balance is performed for each tube, thus generating a system that can be solved numerically. The new methodology has been tuned using data obtained from the numerical simulation of virtual prototypes of regenerative pumps where the disk clearance is part of the control volume. After that, the methodology has been integrated into an existing one-dimensional code called DART (developed at the University of Florence in cooperation with Pierburg Pump Technology Italy S.p.A.) and the new algorithm is verified using available experimental and numerical data. It is here demonstrated that an appropriate calibration of the leakage flow model allows for an improved reliability of the one-dimensional code

    Perylenetetracarboxy-3,4:9,10-diimide derivatives with large two-photon absorption activity

    Get PDF
    Three new perylenetetracarboxy-3,4:9,10-diimides, bearing 2,6-diisopropylphenyl groups at the imide positions and 4-(R-ethynyl)phenoxy moieties (R = 4,7-di(2-thienyl)benzo[c][1,2,5]thiadiazole (P2), pyrene (P3) or pyrene-CH2OCH2 (P4)) at the four bay positions, were prepared, along with the known related derivative (R = phenyl (P1)), and well characterized. They have large two-photon absorption (TPA) cross-sections (sigma(2)), as determined by the Z-scan technique, the highest values being reached with P2 which bears a planar -delocalized donor moiety. P3 is characterized by higher sigma(2) values than both P1, as expected for the higher -conjugation of the donor pyrene moiety with respect to phenyl, and P4, due to the presence of the flexible and non-conjugated CH2OCH2 bridge between the pyrene and the ethynyl fragment in the latter compound. The molecular geometry of P1-P4 has been optimized by DFT modeling, showing that in P2 and P3 the bay substituents are stacked due to the - interactions of both pyrene and thiophene groups. The LUMO of P1-P4 lies at the same energy and is essentially delocalized on the perylene core whereas the HOMO and HOMO-1 of both P2 and P3 are degenerate and do not show contribution from the perylene core contrarily to that of P1 and P4. The HOMO-LUMO gap is therefore essentially influenced by the HOMO which reflects the electronic charge delocalization on the bay substituents, the lower gaps being observed for P2 and P3, which are characterized by the best TPA properties

    Design of polymer-based antimicrobial hydrogels through physico-chemical transition

    Get PDF
    The antimicrobial activity represents a cornerstone in the development of biomaterials: it is a leading request in many areas, including biology, medicine, environment and industry. Over the years, different polymeric scaffolds are proposed as solutions, based on the encapsulation of metal ions/particles, antibacterial agents or antibiotics. However, the compliance with the biocompatibility criteria and the concentration of the active principles to avoid under- and over-dosing are being debated. In this work, we propose the synthesis of a versatile hydrogel using branched polyacrylic acid (carbomer 974P) and aliphatic polyetherdiamine (elastamine\uae) through physico-chemical transition, able to show its ability to counteract the bacterial growth and infections thanks to the polymers used, that are not subjected to further chemical modifications. In particular, the antimicrobial activity is clearly demonstrated against Staphyloccoccus aureus and Candida albicans, two well-known opportunistic pathogens. Moreover, we discuss the hydrogel use as drug carrier to design a unique device able to combine the antibacterial/antimicrobial properties to the controlled drug delivery, as a promising tool for a wide range of biomedical applications

    Breast adenocarcinoma liver metastases, in contrast to colorectal cancer liver metastases, display a non-angiogenic growth pattern that preserves the stroma and lacks hypoxia

    Get PDF
    Although angiogenesis is a prerequisite for the growth of most human solid tumours, alternative mechanisms of vascularisation can be adopted. We have previously described a non-angiogenic growth pattern in liver metastases of colorectal adenocarcinomas (CRC) in which tumour cells replace hepatocytes at the tumour-liver interface, preserving the liver architecture and co-opting the sinusoidal blood vessels. The aim of this study was to determine whether this replacement pattern occurs during liver metastasis of breast adenocarcinomas (BC) and whether the lack of an angiogenic switch in such metastases is due to the absence of hypoxia and subsequent vascular fibrinogen leakage. The growth pattern of 45 BC liver metastases and 28 CRC liver metastases (73 consecutive patients) was assessed on haematoxylin- and eosin-stained tissue sections. The majority of the BC liver metastases had a replacement growth pattern (96%), in contrast to only 32% of the CRC metastases (P<0.0001). The median carbonic anhydrase 9 (CA9) expression (M75 antibody), as a marker of hypoxia, (intensity x % of stained tumour cells) was 0 in the BC metastases and 53 in the CRC metastases (P<0.0001). There was CA9 expression at the tumour-liver interface in only 16% of the BC liver metastases vs 54% of the CRC metastases (P=0.002). There was fibrin (T2G1 antibody) at the tumour-liver interface in only 21% of the BC metastases vs 56% of the CRC metastases (P=0.04). The median macrophage count (Chalkley morphometry; KP-1 anti-CD68 antibody) at the interface was 4.3 and 7.5, respectively (P<0.0001). Carbonic anhydrase 9 score and macrophage count were positively correlated (r=0.42; P=0.002) in all metastases. Glandular differentiation was less in the BC liver metastases: 80% had less than 10% gland formation vs only 7% of the CRC metastases (P<0.0001). The liver is a densely vascularised organ and can host metastases that exploit this environment by replacing the hepatocytes and co-opting the vasculature. Our findings confirm that a non-angiogenic pattern of liver metastasis indeed occurs in BC, that this pattern of replacement growth is even more prevalent than in CRC, and that the process induces neither hypoxia nor vascular leakage

    Large-Area Semi-Transparent Luminescent Solar Concentrators Based on Large Stokes Shift Aggregation-Induced Fluorinated Emitters Obtained Through a Sustainable Synthetic Approach

    Get PDF
    In this study, the design, fabrication, and characterization of semi-transparent large-area luminescent solar concentrators (LSCs) in thin-film configuration is reported, incorporating a novel organic luminophore (PFPBNT) emitter based on a Ï€-conjugated core flanked by two naphthothiophene units obtained through a chemically sustainable synthetic approach. As found experimentally and validated through computational modeling, PFPBNT exhibits aggregation-induced emission (AIE) behavior, broad absorption in the UV–vis spectrum and significant Stokes shift (≈4632 cm–1), thereby making it an excellent candidate as luminophore in thin-film LSCs based on a poly(methyl methacrylate) (PMMA) matrix, where it is found to show good compatibility, homogeneous distribution, and excellent photostability. After extensive device optimization, PFPBNT/PMMA LSCs with suitable luminophore concentration (12.5 wt%) showed an internal photon efficiency of 17.3% at a geometrical gain of 6.25 under solar-simulated illumination. The size scalability of these systems was also evaluated by means of ray-tracing simulations on devices of up to 1 m2 surface area. This work demonstrates semi-transparent large-area thin-film LSCs incorporating chemically sustainable AIEgen luminophores, thus opening the way to the development of synthetically affordable, efficient, and stable emitters for the photovoltaic field

    Conjugate Heat Transfer Analysis of a Film Cooled High-Pressure Turbine Vane Under Realistic Combustor Exit Flow Conditions

    No full text
    In this paper conjugate heat transfer analysis of the cooled vane of the MT1 research high-pressure stage is presented. Inlet boundary conditions (including non-uniform total temperature, non-uniform total pressure, swirl, turbulence intensity and turbulence length scale) are obtained considering the exit flow field of a reactive annular combustor simulator. The combustor model has been designed in order to reproduce data available in literature about exit profiles of real combustion chambers and other combustor simulators. Steady simulations are performed on a hybrid unstructured grid obtained from a grid dependence study. The transitional kT-kL-ω model by Walters and Cokljat is used as turbulent closure. Thermal fields obtained from CHT analysis of the vane considering two different clocking positions with respect to the combustor are compared. Results, including film cooling parameters and High-Pressure Vane aerodynamics, are also compared with a uniform inlet case showing the crucial importance of considering realistic boundary conditions for thermal analysis of turbine components
    • …
    corecore