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ABSTRACT
Regenerative pumps are characterized by a low specific speed that place them between
rotary positive displacement pumps and purely radial centrifugal pumps. They are inter-
esting for many industrial applications since, for a given flow rate and a specified head,
they allow for a reduced size and can operate at a lower rotational speed with respect
to purely radial pumps. The complexity of the flow within regenerative machines makes
the theoretical performance estimation a challenging task. The prediction of the leakage
flow rate between the rotating and the static disks is the one that more than others has an
impact on the prediction of global performance. All the classical approaches to the disk
clearance problem assume that there is no relevant circumferential pressure gradient. In
the present case, the flow develops along the tangential direction and the pressure gradient
is intrinsically non-zero. The aim of the present work is to develop a reliable approach for
the prediction of leakage flows in regenerative pumps. The method assumes that the flow
inside of the disk clearance can be decomposed into several stream-tubes. Energy balance
is performed for each tube, thus generating a system that can be solved numerically. The
new methodology has been tuned using data obtained from the numerical simulation of
virtual prototypes of regenerative pumps where the disk clearance is part of the control
volume. After that, the methodology has been integrated into an existing one-dimensional
code called DART (developed at the University of Florence in cooperation with Pierburg
Pump Technology Italy S.p.A.) and the new algorithm is verified using available experi-
mental and numerical data. It is here demonstrated that an appropriate calibration of the
leakage flow model allows for an improved reliability of the one-dimensional code.
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NOMENCLATURE
A,B Points on the circumference that individuate a stream tube
d Axial extension of the open channel
Deq Equivalent hydraulic diameter
f Friction factor
h Clearance of the disk-casing cavity
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H Impeller blade height
l Perimeter
L Generic distance between two points on the circumference
nd Non-dimensional
Nbl Number of impeller blades
p Pressure
P Point on a stream tube
Q Flow-rate
r Radius
Re Reynolds number
s Width of the disk-casing cavity
t Impeller blade thickness
S Passage area of the stream tube
U Velocity contribution of relative disk-casing movement
W Velocity
Greek
α Angle from stripper to point P
φ Angle from stripper to point B
Φ Flow coefficient
Ψ Load coefficient
ρ Density
θ Angle from stripper to point A
ω Rotating speed

INTRODUCTION
In the automotive field, secondary systems are often equipped with small turbomachines

that elaborate small flow rates and guarantee a high pressure rise, thus positioning the machine
in the low specific speed region. Considering that reduced weight and size are also necessary,
regenerative pumps become competitive with respect to radial pumps. Regenerative pumps
(also known as side channel pumps) are characterized by low specific speed values. If specific
speed is calculated with n in [rpm], Q in

[
m3

s

]
and H in [m], typical values for regenerative

pumps are between 2 and 11 as reported by Gülich (2010). These pumps combine the high
pressure rise of positive displacement pumps with the flexible operation of centrifugal pumps.
Although side channel pumps are characterized by a slightly lower peak efficiency with respect
to centrifugal turbomachines, it must be underlined that in the optimal range of application they
represent a compact solution that guarantees a stable performance close to the design point at a
lower rotational speed with respect to centrifugal pumps. Regenerative pumps are characterized
by the presence of an impeller equipped with plane blades and of a vaneless diffuser. The flow
enters the impeller at the lower radius and is energized while passing through the blade channel,
then it is purged towards the side channel at a higher radius, thus reducing its velocity along
a helical trajectory and increasing the pressure level. Considering that the impeller elaborates
the fluid several times through helical trajectories, the machine realizes an internal multistaging
from which regenerative pumps take their name.

A one-dimensional tool called DART (Design and Analysis tool for Regenerative Turbo-
machinery) aimed at providing preliminary design parameters for plane blades pumps has been
developed by the Turbomachinery and Combustion Research group of the Department of Indus-
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trial Engineering (DIEF) of the University of Florence (Italy) with the support of the Modeling
R&D Department of Pierburg Pump Technology. The DART code is based on the momentum
exchange theory described in Yoo et al. (2005) and Yoo et al. (2006) and has been verified using
available experimental and numerical data in Insinna et al. (2018). Although Gülich (2010)
demonstrated the high dependence of regenerative pump efficiency on the dimension of leak-
ages in off-design conditions, the original version of the DART neglects the leakage flows’
effect on the main-flow, thus providing inaccurate data when manufacturing uncertainty makes
the dimension of the disk clearance relevant. The aim of this work is to develop a methodology
to correctly evaluate the leakage flow through a stationary and a rotating disk in presence of
tangential pressure non-uniformity and to implement it into the DART code. To comply with
that aim, a theoretical study of the problem is performed and a new approach (partially based on
the one originally proposed in Balje (1957)) is presented. The new method is implemented in
Matlabr and is tuned using data obtained from the numerical simulation of virtual prototypes
of regenerative pumps where the disk clearance is part of the control volume. In the second part
of the paper the implementation of the new method in DART is described and the new version
of the code is verified using the available experimental and numerical data. The obtained re-
sults show that the new methodology allows for an improved prediction of regenerative pump
performance.

THE DART CODE
The use of simplified models for the preliminary analysis and design of energy systems’

components is widely accepted in the turbomachinery field (see for example Griffini et al.
(2015), Bontempo & Manna (2016), Bontempo & Manna (2017) and Griffini et al. (2016)).
Concerning regenerative pumps, a one-dimensional tool called DART has been developed aim-
ing at providing preliminary design parameters for the setup of detailed three-dimensional nu-
merical simulations. The original model for performance prediction is as described in Yoo et al.
(2005) and Yoo et al. (2006) and is based on the following hypotesis:

• steady, adiabatic, incompressible flow;

• pressure independent from axial and radial coordinates;

• leakage flow through disks does not have any impact on the main flow.

The second hypothesis makes the model one-dimensional, while the third hypotesis is the
one that has to be overcome in order to increase DART’s accuracy. The development and
verification of the original version of the DART code is beyond the aims of the present paper.
For a detailed description of DART refer to Insinna et al. (2018). The aim of the present work
is to equip the DART code with a new methodology for the prediction of leakage flows through
stationary and rotating disks in presence of a tangential pressure non-uniformity, which is a
typical configuration during regenerative pump operation.

THE MODEL FOR LEAKAGE FLOWS
To allow for the relative motion between casing and impeller, a gap between these two

parts is needed. This gap allows the fluid with high pressure (near the outlet section) to flows
towards the lower pressure zones (see Figure 1). That leakage flow (called Ql,disk(θ) in Figure
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Figure 1: Scheme of the regenerative pump

1) generates a reduction of the overall efficiency (the already pumped fluid returns to lower
pressure and part of the energy is wasted) and makes performances evaluation more complex.

With reference to Figure 1, it is possible to write the continuity equation as follows:

Q(θ) = Qin +Ql,st +Ql,disk(θ) (1)

This particular kind of leakage flow transforms the pump in a machine with tangentially-
variable flow rate and then, for a correct calculation of the performance, it necessary to correctly
estimate the leakage flow rate in every sector of the machine. The classical models for leakage
flows are not sufficient in this case: in fact, the tangential gradient of pressure is usually not
considered in those models. The models of Batchelor (1951) and of Stewartson (1953) are very
important to describe the behavior of the leaked flow between the rotating and the stationary
disks, but are only partially useful in the present case since they usually deal with radially
inward and outward flows in side cavities (i.e. Salvadori et al. (2012) for centrifugal pumps
and Gülich (2010) for centrifugal pumps), while in the present case the leakage flow moves
along chords between two points along a circumferential position. That configuration has been
studied by Balje (1957), but in that work only the estimation of total leaked flow was presented
(no information about the distribution of the leakage flow was available). Therefore, the aim of
the present work is to extend the method suggested by Balje in order to accurately evaluate the
tangential distribution of leakage flow rate.

Theoretical development
The present model is based on two fundamental assumptions. The first one is that the

diameter of the shaft is negligible with respect to the diameter of the hub of the blades. That
hypothesis allows to develop a model where the blockage of the shaft does not modify the total
leakage flow rate. The second one is that the contribution of centrifugal forces to the tangential
distribution of the leakage flow is negligible with respect to the pressure ratio between two
different zones of the pump. That hypothesis means that the fluid can follow a straight trajectory
inside of the cavity between two points, considering negligible any deviation from a straight line
between any couple of points. Given these hypothesis a stream-tube model can be developed.
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The disk-casing cavity is considered as a zone delimited by a circular boundary and each
couple of points Pi and Pj laying on that zone identify a stream tube along a chord Cij . There-
fore, the leakage flow rate in each stream tube can be determined by knowing the pressure ratio
between Pi and Pj , the hydraulic resistance between Pi and Pj and the motion of the disk rela-
tive to the casing in every point of Cij . In Figure 2a the circumference has been scaled to have
radius equal to 1. and the radius defines the distance from the axis of the shaft to the hub of
the vanes. Referring to 2a it is possible to define the angle θ that from the stripper locate the
point A on the circumference and the angle φ that from the stripper locate the point B on the
circumference. The flow rate from a point Pi to a point Pj can be written as follows:

qij = Sij

(
Wij +

Umean,ij
2

)
(2)

where Wij depends on the pressure ratio between the point Pi and the point Pj and Sij is
the passage area of the stream tube Pi − Pj . In a cavity with a relative motion between two
walls, the superposition principle allows to correct the flow rate qij by a factor U

2
, where U is

the relative speed between the walls. Therefore, the term Umean,ij represents the effect of the
rotation of the disk to the leakage flow and depends on the relative motion between the impeller
and the casing. All of those terms have to be calculated separately. The energy equation for a
generic stream tube A−B can be written as follows:

pA
ρ

+
WA

2
+RBA =

pB
ρ

+
WB

2
(3)

where RBA are the losses in the stream-tube A−B considering an uniform velocity profile.
Also the section of the stream tube is considered constant, and then Equation (3) reduces to:

pB − pA
ρ

= RBA (4)

For what concerns the sign of the velocity and the flow-rate it is considered positive the flow
rate coming into the cavity and negative the flow rate exiting the cavity. The losses RBA depend
on the square of the velocity W , on the length L of the chord AB, on the friction factor f and
on the equivalent hydraulic diameter Deq:

RBA = f
L

Deq

W 2

2
(5)

Combining Equation (5) with Equation (4) it is possible to evaluate the velocity W :

WAB =

√
2Deq(pB − pA)

Lfρ
(6)

The equivalent hydraulic diameter is equal to the ratio between four times passage area and
the wetted perimeter:

Deq =
4S

lwetted
=

4hs

2s
= 2h (7)

where h is the height of the cavity. The length of the chord L is:
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(a) (b)

Figure 2: (a) Nomenclature for angular positions
(b) Tangential Qdistribution

L = 2r sin

(
φ− θ

2

)
(8)

For what concerns the friction factor, it is a function of Reynolds number Re = ρWDeq

µ
and

of the relative roughness, which is available from a Moody’s chart. Finally, an equation for the
velocity W is available:

WAB =

√
2h(pB − pA)

rfρ sin
(
φ−θ

2

) (9)

The value of the effect of the term Umean,ij of Equation (2) has also to be evaluated. Neither
the magnitude nor the direction of U will be constant along a chord AB, and then the integral
average of the parallel component of U along the chord (called Umean) has to be used:

Umean =
1

φ− θ

∫ φ

θ

U • (A−B)

‖A−B‖
dα. (10)

With reference to Figure 2a it is possible to write:

U = ρω

(
− sinα
cosα

)
(11)

Combining Equation (11) with Equation (10) it is possible to evaluate Umean:

Umean = ω cos
φ− θ

2
sign

(
sin

φ− θ
2

)
(12)
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where:

sign(x) =

{
1 ifx ≥ 0

−1 ifx < 0
(13)

Once the velocities Wij and Umean,ij are calculated it is possible to evaluate the flow rate
using Equation (2) estimating the passage area. Given a discretization dθ =

2π−θstripper
N

, where
N is the number of tangential steps, the passage area of the stream tube from

(
θ − dθ

2
, θ + dθ

2

)
to
(
φ− dθ

2
, φ+ dθ

2

)
is:

SAB = 2hr sin

(
dθ

2

)
sin

(
φ− θ

2

)
(14)

IMPLEMENTATION OF THE LEAKAGE MODEL
The proposed model has been initially implemented as a stand-alone tool in MATLABr

in order to test its accuracy and to tune the method using the available data obtained from a
specifically performed numerical campaign using Computational Fluid Dynamics (CFD). The
final version of the model has been implemented in DART and the new code has been verified
using both CFD and experimental data.

In order to make the new model work in DART, the circumferential domain of the cavity is
divided into n equal parts θi, written in a vector ϑ. The matrix ∆p is also defined, where the
ij − th element represents the difference of pressure between ϑi and ϑj:

∆p = pΓn
T −

(
pΓn

T
)T

(15)

In Equation (15) Γn is a n-dimensional vector that has an unitary value in every component.
With the same method the matrix containing the difference of the angular coordinate between
ϑi and ϑj can be written:

∆ϑ = ϑΓn
T −

(
ϑΓn

T
)T

(16)

In order to complete the implementation it is necessary to define the matrices of the passage
areas, of the length of the chords and of the square root of differences of pressure between ϑi
and ϑj:

S =
h

n− 1

∣∣∣∣2r sin

(
dθ

2

)
sin

(
∆ϑ

2

)∣∣∣∣ (17)

L =

∣∣∣∣2r sin

(
∆ϑ

2

)∣∣∣∣ (18)

K = <
(√

∆P
)
−
[
<
(√

∆P
)]T

(19)

In the latter equation the operator < refers to the real part of the elements of the matrix.
Since it is necessary to initialize an iterative cycle, a discharge coefficient is calculated with a
methodology proposed by Balje (1957). The initial guess of the friction factor λ has therefore
no physical relevance:
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CD =

√
2h

λ

1

L
(20)

Then, the first attempt leakage flow rate Q∗ will be:

Q∗ = rhCD ◦Kdθ (21)

It is now possible to calculate the matrix of Reynolds numbers and a fictitious velocity
dividing the flow rate by the passage area:

Re =
ρ |Wold|Deq

µ
(22)

Wold,ij =
Q∗
ij

Sij
(23)

The iterative cycle can start by recalculating the value of W with the following equation:

Wnew = K ◦
√√√√ 2ρ

Col
(
Re; ε

Deq

)
◦ L
Deq

(24)

where Col
(
Re; ε

Deq

)
is the function that gives the friction factor using the Colebrook for-

mula. The cycle will converge when the following convergence condition is reached:

max

∣∣∣∣Wnew −Wold

Wold

∣∣∣∣ < δ (25)

In order to be coherent with the proposed physical model, it is possible to correct the ob-
tained velocity value including the effects of rotation:

Wrot = W +
ωr cos ∆ϑ

2
◦ sign

(
sin ∆ϑ

2

)
2

(26)

where ◦ is the element-by-element product. According to Equation (2), the flow rate is
Qij = SijWrot,ij . From this matrix we can obtain the vector of the leakage flow rates for every
discretized element Qdistribution

i and the vector of cumulative sum of leaked flow rate Qcumul
i :

Qdistribution
i =

N∑
j=1

Qij (27)

Qcumul
i =

i∑
j=1

Qdistribution
j (28)

From these data the total flow rate leaked into the cavity can be finally calculated:

Qtot,leak = max
i=1...n

Qcumul
i (29)

The typical distribution of flow rate obtained from the aforementioned model is schematized
in Figure 2b. The leakage flow rate is maximum close to the stripper (maximum pressure drop
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available) and reaches zero in the circumferential position opposite to the stripper region. In a
real machine, a leakage flow rate will also be present between the stripper and the cavity. In the
present model the stripper leakage flow rate is supposed to move across the stripper from the
outlet to the inlet of the regenerative machine (Ql,st in Figure 1) without any interaction with
the cavity flow and then it is treated separately from the disk leakage.

CALIBRATION OF THE LEAKAGE MODEL
The proposed leakage model has been initially calibrated using data from a numerical cam-

paign performed considering a prototype regenerative pump whose characteristics fit the overall
necessities of the automotive field of application.

Details about the three-dimensional simulations
The virtual model used for the Computational Fluid Dynamics (CFD) activity consists in

a single-sided regenerative pump characterized by blades of semi-circular shape. The main
parameters of the machines are reported in non-dimensional form with respect to the blade
height in Table 1.

rhub/H [-] 1.23
rtip/H [-] 2.23
d/H [-] 0.30
t/H [-] 0.134
h/H [-] 0.00886, 0.0177, 0.0354
Nbl [-] 30
Φ [-] 0.52
Ψ [-] 2.5
Re [-] 197000

Table 1: Non-dimensional parameters of the regenerative pump

The domain is composed by impeller, side channel, inlet and outlet ducts and the cavities
(both stripper and disk). The outlet duct is extended about 10 diameters downstream of the
pump. Such an elongation of the outlet duct is necessary for avoiding the formation of flow
recirculation on the outlet section due to the presence of residual swirl under some operating
conditions. Three different values for the dimension of the disk clearance has been considered.
For the investigated cases, the radial clearance at the rotor tip has the same value considered for
the disk clearance.

The computational grid used for the three-dimensional RANS simulations of the pump is
generated with the meshing tool of the commercial software Pumplinxr. Attention is dedicated
to the refinement of the critical region of the stripper leakage and of the cavity. The overall grid
is composed by about 14.8M elements. Such grid resolution is appropriate to make the problem
grid-independent according to the works of Quail et al. (2011) and Nejadrajabali et al. (2016),
where grid sensitivity studies were performed on similar machines.

The three-dimensional numerical campaign has been carried out using the Pumplinxr solver.
Air is treated as an ideal gas while the viscosity is calculated using Sutherland’s law. Second-
order accurate discretization is used for the continuity and the momentum equation while first-
order accurate discretization is used for the energy equation and turbulence modelling. The
realizable κ− ε model Shih et al. (1995) is used as turbulence closure. The selected turbulence
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Figure 3: Qcumul comparisons for h/H = 0.00886

closure demonstrated to be reliable for the prediction of performance of regenerative pumps, as
showed by Quail et al. (2011). At the maximum flow rate simulated, the average y+ is always
below 5 (compatible with the y+-independent approach used).

The frozen-rotor approach has been chosen. The impeller is frozen in a symmetrical position
with respect to the stripper, with the maximum closure of this latter by the vanes. This position
was chosen in order to compare the results with DARTs predictions, since such configuration is
assumed for the estimation of the leakage flow. It has been verified that a change in the relative
positioning between impeller and static parts does not modify substantially the obtained results.
For all the simulations, mass-flow rate and total temperature were imposed on inlet section while
static pressure is defined at the outlet. For the calculation of the pressure rise of the machine, the
reference sections are in correspondence of the inlet and outlet sections of the model. Although
the simulations include fluid’s compressibility, it is observed that for the investigated cases
density variations are negligible, thus confirming that CFD data can be compared with DART
results.

Calibration of the model
The model has been calibrated comparing its results with data from the CFD simulations.

For the calibration procedure the case with the smaller gap (h/H = 0.00886) has been consid-
ered. For the comparison between CFD data and the outcome of the 1D model, the interface
region between the side channel and the cavity has been considered to extract (from the numeri-
cal simulations) the boundary conditions of the model and the reference data for the comparison.
The circumference has been split into 600 sectors and for every sector the averaged values of
pressure and radial velocity has been considered. The number of sectors has been chosen after
a sensitivity test. It has been demonstrated that over 600 sectors there are no more differences
in the obtained results, then the outcome of the model is independent from the discretization in
the tangential direction. However, in the standard routine DART uses a lower number of sectors
to obtain a faster convergence rate .The sum of the elements of the latter vector multiplied for
the surface of one sector represents the total flow rate leaked through the cavity. The 1D model
uses a discretization that is different from the one used for the numerical campaign and then the
tangential pressure distribution has been interpolated at the boundary with a shape-preserving
algorithm.

10



In Figure 3a a comparison between the model (dashed line) and the CFD data (solid line) for
Qcumul at h/H = 0.00886 is reported. In that figure θnd = 0 is in correspondence of the center
of inlet duct and θnd = 1 correspends to the center of the outlet duct. It can be observed that the
model does not forecast the fluctuations due to the presence of the vanes, but it was an expected
result since they are not considered in the hypothesis of the model. The discrepancy on the
global leaked flow rate can be estimated around 1,66%. The trend of the curve for the model is
quite similar to the curve obtained from CFD data, particularly for what concern the tangential
position of the maximum of the curve. The limits of the zones with a positive derivative (the
flow rate that leaks from the side channel into the cavity) and the zones with a negative derivative
(the flow rate leaks from the cavity to the side channel) are also well reproduced.

The model seems to be able to reproduce the overall flow rate passing from side to side of
the stator/rotor cavity, but also shows some discrepancies in the reproduction of the flow rate
repartition around the disk. In order to overcome such limitation, a non-dimensional distribution
of the flow rate around the stator/rotor cavity obtained from the CFD campaign is used to tune
the model. Since the leakage flow through the stripper zone is not considered in DART as
a contribution to the total leaking flow, that flow rate has been deducted and the CFD data
distribution visible in Figure 3b (solid line) is obtained. As it is possible to observe the non-
dimensional distribution does not reach the unitary value due to the exclusion of the stripper
flow rate from the computation of the cumulative distribution (the θnd variable is therefore
limited between 0 and 1). The CFD data distribution has been fitted with a polynomial function
and used in a non-dimensional form to correct the theoretical flow rate (Equation (2)) obtained
from the proposed model. The comparison between the CFD data and the stand-alone model
after the tuning procedure is visible in Figure 3b (dash-dotted line).

In Figure 3b a comparison between the results calculated by a version of DART equipped
with the tuned leakage model (dashed line) and the results from CFD campaign without stripper
leakage is reported. The two curves showed in Figure 3b are obtained for the same pump but
with two completely different approaches. In fact, the dashed line in Figure 3b is obtained by
calculating iteratively the pressure distribution and the leakage flow rate in a coupled way with
DART. As can be observed, the prediction of the leakage flow distribution along the tangential
direction is quite close to the CFD data and to the one obtained with the calibrated stand-alone
model (dash-dotted line in Figure 3b), thus demonstrating that the tuned model implemented in
DART is able to capture the quantitative and qualitative behaviour of the leakage flow.

VALIDATION OF THE MODEL
It has been showed that the DART code equipped with a tuned disk leakage model is able

to reproduce correctly the tangential distribution of leakage flow rate if compared with CFD
data. It is now necessary to check its accuracy when the performance of the regenerative pump
is of interest. The code verification procedure is therefore completed comparing the data ob-
tained using the DART code with the CFD data from the already described campaign and with
experimental data from literature.

Comparison with CFD data
A comparison between the performance obtained with DART and with the CFD campaign

that has been introduced in the previous section is here reported. In Table 2 the data obtained
from DART with the leakage option switched on and off are compared with CFD data. Vari-
able were reduced to non-dimensional values with reference to the non-dimensional ∆p value
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obtained using CFD for the case with a non-dimensional axial clearance equal to 0.0177.
As can be observed, both the ∆p and the η values are greatly overestimated with respect to

CFD data if the leakage model is switched off. The accuracy of the DART code increases when
the leakage flow model is used, especially in terms of ∆p for both the h/H = 0.00886 and the
h/H = 0.0354 cases. Also the trend of variation of the performance is well captured, with some
notable exception. In fact, both the ∆p and the η values for the h/H = 0.0177 case does not
diminish as expected and in general the η values obtained with DART are higher than the respec-
tive ones obtained from the CFD campaign. The latter behaviour can be explained considering
that a one-dimensional model cannot correctly evaluate the impact of three-dimensional phe-
nomena (like secondary flows) on the performance of the machine, unless they are specifically
modelled with correlations that has to be tuned for the specific range of application.

h/H 0.0 0.00886 0.0177 0.0354
∆p η ∆p η ∆p η ∆p η

DART w/o leakage 2.40 50% - - - - - -
DART with leakage - - 2.07 44% 1.43 45% 0.52 30%
CFD - - 2.05 34% 1.00 26% 0.58 21%

Table 2: Comparison between performances of CFD and DART

In order to better understand the differences in the ∆p prediction, the pressure variation
along the circumferential coordinate for the three investigated cases has been analyzed. Con-
cerning the CFD data, the same procedure used to extract the pressure boundary condition for
the stand-alone model is used. Results are reported in Figure 4 in a non-dimensional form with
respect to the ∆p value obtained from the CFD campaign excluding the stripper region. Data
showed in Figure 4 refer to a case with h/H = 0.0177 and a halved radial clearance at the
rotor tip. As can be observed, the inclination of the pressure variation along the circumferential
direction obtained without the leakage model (dash-dotted line) is higher than the one obtained
from the CFD campaign (solid line), thus leading to a higher ∆p value of the pump. That
overestimation is corrected by activating the leakage model (dashed line in Figure 4), which
iteratively corrects the local flow rate of the pump and reduce the overall performance in terms
of ∆p. Current data demonstrate that the implementation of a calibrated leakage flow model in
the original one-dimensional code improves its accuracy by a non-negligible factor.

Comparison with experimental data
There is a limited amount of experimental data in literature about regenerative pumps’ per-

formance. In fact, those machines are not extensively studied if compared with centrifugal
pumps. Anyway, the dimension of the disk clearance can be extrapolated from a study made
by Yoo et al. (2006) about a regenerative pump used as an heart pump. It can be observed that
for the cases studied in Yoo et al. (2006), leakage flows’ impact on the performance of the heart
pump is more relevant as the ratio h/H increases. That outcome is coherent with the numeri-
cal data showed in Table 2, where it is demonstrated that increasing the clearance value has a
detrimental effect on the regenerative pump performance.

Since the heart pump is fully described by Yoo et al. (2006), their experimental results can
be compared with data obtained with DART for the same geometrical configuration (including
clearance dimension) and working conditions. Only flow rates close to the design point at
ω = 2400 RPM are considered, to study the clearance effects limiting the impact of off-design
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Figure 4: Comparison of pressure rise between DART (with and w/o leakage option) and CFD
data

conditions on the overall performance. The comparison between the experimental data and
the numerical results is reported in Table 3 for the case h/H = 0.00282. The percentage of
overestimation of the pressure rise made by DART with respect to the experimental value is
tabulated.

Q [lpm] DART without leakage [%] DART with leakage [%] Experimental data [mbar]
3.45 +30 +11 216
3.95 +42 +9 182
4.40 +40 +3 149
4.85 +41 -6 115
5.25 +42 -20 82

Table 3: Comparison between pressure rise of experimental data and DART

The entity of the misestimation for the case without leakage model is quite high (around
+40%), while the leakage model allows to limit the difference with respect to the experiments
to the (-20%;+11%) interval. Further than the reduction of the error, it is interesting to observe
that switching on the leakage flow model makes the variation of performance with respect to
the experimental data dependent on the flow rate of the pump.

Although it is not possible to state that the model is fully validated, it can be concluded that
the implemented method increases the accuracy of the DART code by introducing a physical
feature that has a fundamental impact on the regenerative pump performance.

CONCLUSIONS
A novel methodology for the evaluation of leakage flow tangential distribution through a

stationary and a rotating disk subject to a non-uniform pressure field is proposed. The aim of
the activity is to implement the methodology in the DART code, which is able to predict the
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performance of a regenerative pump using a one-dimensional approach. The theory underlying
the methodology is explained and the implementation procedure is detailed. The outcome of
the stand-alone methodology is initially compared with data obtained from a three-dimensional
CFD campaign of a virtual prototype used as reference case. A tuning procedure is defined
in order to correctly reproduce the shape of the tangential flow rate distribution neglecting the
stripper flow rate contribution.

The tuned model is coupled with the original algorithm in DART and results are compared
with CFD data, thus demonstrating that the new version of the code is able to capture the
main-flow/leakage-flow interaction phenomenon. Then, DART is used to analyse the perfor-
mance of the reference case varying the clearance dimension and results are compared with
CFD data. The obtained results show that if the clearance dimension increases, the performance
of the pump decreases. Furthermore, data demonstrate that the implementation of the calibrated
leakage-flow model improves DART accuracy by a non-negligible factor. Finally, DART is used
to analyse a heart pump geometry whose characteristics are available from literature. Based on
the data comparison, it can be concluded that the implemented method greatly increases the
accuracy of the DART code by considering a real-machine effect that has a fundamental impact
on regenerative pump performance.
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